

ARM Based 32-Bit Microprocessor

Copyright. 2004 MagnaChip Semiconductor Ltd.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy, microfilm, retrieval system, or by any other means now known or hereafter invented without the prior written permission of MagnaChip Semiconductor Ltd.

MagnaChip Semiconductor Ltd. #1, Hyangjeong-dong, Heungduk-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea

Homepage: <u>www.magnachip.com</u> Technical Support Homepage: <u>www.softonchip.com</u>

 H.Q. of MagnaChip Semiconductor Ltd.
 Marketing Site Sales in Korea

 Telephone:
 82-(0)43-270-4070
 Telephone:
 82-(0)43-270-4085

 Facsimile:
 82-(0)43-270-4099
 Facsimile:
 82-(0)43-270-4099

World Wide Sales Network U.S.A. Telephone: 1-408-232-8757 Facsimile: 1-408-232-8135

Taiwan Telephone: 886-(0)2-2500-8357 Facsimile: 886-(0)2-2509-8977 Telephone: 82-(0)2-3459-3738 Facsimile: 82-(0)2-3459-3945

Hong Kong Telephone: 852-2971-1640 Facsimile: 852-2971-1622

Proprietary Notice

MagnaChip logo is trademark of MagnaChip Semiconductor Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material from except with the prior permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by MagnaChip in good faith. However, all warranties implied or expressed, including but not limited to implied warranties or merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. MagnaChip Semiconductor Ltd. shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product. MagnaChip Semiconductor Ltd. may make changes to specification and product description at any time without notice.

Change Log

STICS
S

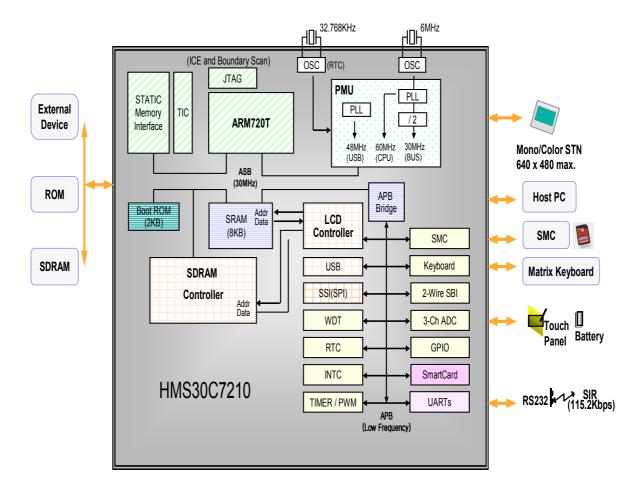
OVERVIEW

The HMS30C7210 is a highly integrated low power microprocessor for card reader system, and other applications described below. The device incorporates an ARM720T CPU and system interface logic to interface with various types of devices. HMS30C7210 is a highly modular design based on the AMBA bus architecture between CPU and internal modules.

The on-chip peripherals include LCD controller with DMA support for internal SRAM and external SDRAM memory, analog functions such as ADC and PLL. Intelligent interrupt controller and internal 8Kbytes SRAM can support an efficient interrupt service execution. The HMS30C7210 also supports a touch panel interface. UART and USB provide serial communication channels for external systems. The power management features result in very low power consumption. The HMS30C7210 provides an excellent solution for card reader system.

FEATURES

32-bit ARM7TDMI RISC static CMOS CPU core (Running up to 60 MHz) 8Kbytes combined instruction/data cache Memory management unit Supports Little-endian operating system 8Kbytes SRAM for internal buffer memory 2Kbytes Boot ROM On-chip peripherals with individual power-down:


- Memory controller for ROM(x8,16), Flash(x8,16), SRAM(x8,16), SDRAM(x16)
- 5-State Power management unit (Sofrware selectable Clock Frequency)
- Interrupt Controller
 LCD Controller for color and mono STN
- USB 1.1(slave)
- Two Smart Card Interface (UART 0,1)
- Two UART (UART 2,3)
- One SIR support UART (UART4)
- One Modem support UART (UART5)
- Four 16-bit Timer Channels (with Output Port)
- Two 16-bit PWM Channels (with Output Port)
- Programmable WatchDog Timer with On-chip Oscillator
- Real-time clock (32.768kHz oscillator) with separated Vcc
- Matrix Keyboard control interface (6x6)
- 97 Programmable GPIO
- One 2-Wire Serial Bus Interface
- 2-Channel Master/Slave SSI (SPI)
- SMC Card Interface
- On-chip 3-Channel 10-bit ADC

JTAG debug interface and boundary scan 0.35um CMOS Process 3.3V supply voltage 208-pin LQFP / CABGA package

Low power consumption

HMS30C7210 System Overview

LIST OF CONTENTS

1	ARCHITECTURAL OVERVIEW	- 9 -
1.1	PROCESSOR	- 9 -
1.2	VIDEO	
1.3	Memory	
1.4	INTERNAL BUS STRUCTURE	
1.4.1	ASB	-9-
1.4.2	Video bus	
1.4.3	APB	
1.5	SDRAM CONTROLLER	
1.6	Peripherals	
1.7	Power management	
1.7.1	Clock gating	
1.7.2	РМU	
1.8	TEST AND DEBUG	
2	SIGNAL DESCRIPTION	- 13 -
2.1	208-Pin Diagram	- 13 -
2.2	208 Pin / Ball Name	
2.2.1	LOFP Type Dimensions	
2.2.1	CABGA Type Dimensions	
2.2.2	Pin Descriptions	
2.3.1	External Signal Functions	
2.3.2	Pin Specific Description	
3	ARM720T MACROCELL	- 25 -
3.1	ARM720T MACROCELL	- 25 -
4	MEMORY MAP	- 27 -
5	INTERNAL BOOT ROM	- 33 -
5.1	HARDWARE SETTING	33
5.2	Software Setting	
5.2		
6	PMU & PLL	- 37 -
6.1	External Signals	- 38 -
6.2	Registers	- 38 -
6.2.1	PMU Mode Register (PMUMR)	. 39 -
6.2.2	PMU ID Register (PMUID)	· 39 -
6.2.3	PMU Reset/Status Register (PMURSR)	· 40 -
6.2.4	PMU Clock Control Register (PMUCCR)	· 43 -
6.2.5	PMU Debounce Counter Test Register (PMUDCTR)	- 45 -
6.2.6	PMU Test Register (PMUTR)	
6.3	PMU FUNCTIONS	- 48 -
6.4	Power Management	- 51 -
6.4.1	State Diagram	- 51 -
6.4.2	Power management States	
6.4.3	Wake-up Debounce and Interrupt	
6.5	Reset Sequences	
6.5.1	Power On Reset (Cold Reset))	· 54 -
6.5.2	Software Generated Warm Reset	
6.5.3	An Externally Generated Warm Rese	
7	SDRAM CONTROLLER	. 59 -
'		57-

7.1	Supported Memory Devices 60 -
7.2	External Signals
7.3	Registers 61 -
7.3.1	SDRAM Controller Configuration Register (SDCON)
7.3.2	SDRAM Controller Refresh Timer Register (SDREF) 64 -
7.3.3	SDRAM Controller Write buffer flush timer Register (SDWBF) 64 -
7.4	Power-up Initialization of the SDRAMs65 -
7.5	SDRAM MEMORY MAP 66 -
7.6	AMBA ACCESSES AND ARBITRATION 69 -
7.7	Merging Write Buffer
8	STATIC MEMORY INTERFACE 73 -
8.1	EXTERNAL SIGNALS 74 -
8.2	Registers 74 -
8.2.1	MEM Configuration Register 75 -
8.3	FUNCTIONAL DESCRIPTION 76 -
8.3.1	Memory bank select 76 -
8.3.2	Access sequencing 76 -
8.3.3	Wait states generation 76 -
8.3.4	Burst read control
8.3.5	Byte lane write control 77 -
8.4	READ, WRITE TIMING DIAGRAM FOR EXTERNAL MEMORY 80 -
8.4.1	Read Access Timing (Single mode) 80 -
8.4.2	Read Access Timing (Burst mode) 81 -
8.4.3	Write Access Timing 82 -
9	AMBA PERIPHERALS 83 -
0.1	LOD CONTROLLED 95
9.1	LCD CONTROLLER
9.1.1	External Signals 86 -
9.1.1 9.1.2	External Signals 86 - Registers 86 -
9.1.1 9.1.2 9.1.3	External Signals 86 - Registers 86 - LCD controller datapath 94 -
9.1.1 9.1.2 9.1.3 9.1.4	External Signals 86 - Registers 86 - LCD controller datapath 94 - Color/Grayscale dithering 95 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	External Signals- 86 -Registers- 86 -LCD controller datapath- 94 -Color/Grayscale dithering- 95 -LCD panel dependent settings- 96 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6	External Signals- 86 -Registers- 86 -LCD controller datapath- 94 -Color/Grayscale dithering- 95 -LCD panel dependent settings- 96 -Frame data dependent settings- 103 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7	External Signals- 86 -Registers- 86 -LCD controller datapath- 94 -Color/Grayscale dithering- 95 -LCD panel dependent settings- 96 -Frame data dependent settings- 103 -Other settings- 105 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2	External Signals- 86 -Registers- 86 -LCD controller datapath- 94 -Color/Grayscale dithering- 95 -LCD panel dependent settings- 96 -Frame data dependent settings- 103 -Other settings- 105 -INTERRUPT CONTROLLER- 107 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1	External Signals- 86 -Registers- 86 -LCD controller datapath- 94 -Color/Grayscale dithering- 95 -LCD panel dependent settings- 96 -Frame data dependent settings- 103 -Other settings- 105 -INTERRUPT CONTROLLER- 107 -Registers- 108 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2	External Signals- 86 -Registers- 86 -LCD controller datapath- 94 -Color/Grayscale dithering- 95 -LCD panel dependent settings- 96 -Frame data dependent settings- 103 -Other settings- 105 -INTERRUPT CONTROLLER- 107 -Registers- 108 -Interrupt Control- 111 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3	External Signals- 86 -Registers- 86 -LCD controller datapath- 94 -Color/Grayscale dithering- 95 -LCD panel dependent settings- 96 -Frame data dependent settings- 103 -Other settings- 105 -INTERRUPT CONTROLLER- 107 -Registers- 108 -Interrupt Control- 111 -USB SLAVE INTERFACE- 113 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1	External Signals- 86 -Registers- 86 -LCD controller datapath- 94 -Color/Grayscale dithering- 95 -LCD panel dependent settings- 96 -Frame data dependent settings- 103 -Other settings- 105 -INTERRUPT CONTROLLER- 107 -Registers- 108 -Interrupt Control- 111 -USB SLAVE INTERFACE- 113 -Block Diagram- 114 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2	External Signals- 86 -Registers- 86LCD controller datapath- 94 -Color/Grayscale dithering- 95 -LCD panel dependent settings- 96 -Frame data dependent settings- 103 -Other settings- 105 -INTERRUPT CONTROLLER- 107 -Registers- 108 -Interrupt Control- 111 -USB SLAVE INTERFACE- 113 -Block Diagram- 114 -External Signals- 115 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3	External Signals- 86 -Registers- 86LCD controller datapath- 94 -Color/Grayscale dithering- 95 -LCD panel dependent settings- 96 -Frame data dependent settings- 103 -Other settings- 105 -INTERRUPT CONTROLLER- 107 -Registers- 108 -Interrupt Control- 111 -USB SLAVE INTERFACE- 113 -Block Diagram- 114 -External Signals- 115 -Registers- 115 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4	External Signals- 86 -Registers- 86 -LCD controller datapath- 94 -Color/Grayscale dithering- 95 -LCD panel dependent settings- 96 -Frame data dependent settings- 103 -Other settings- 105 -INTERRUPT CONTROLLER- 107 -Registers- 108 -Interrupt Control- 111 -USB SLAVE INTERFACE- 113 -Block Diagram- 114 -External Signals- 115 -Registers- 115 -Theory of Operation- 122 -
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5	External Signals- 86Registers- 86LCD controller datapath- 94Color/Grayscale dithering- 95LCD panel dependent settings- 96Frame data dependent settings- 103Other settings- 105INTERRUPT CONTROLLER- 107Registers- 108Interrupt Control- 111USB SLAVE INTERFACE- 113Block Diagram- 114External Signals- 115Theory of Operation- 122Endpoint FIFOs (Rx, Tx)- 125
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.4	External Signals- 86Registers- 86LCD controller datapath- 94Color/Grayscale dithering- 95LCD panel dependent settings- 96Frame data dependent settings- 103Other settings- 105INTERRUPT CONTROLLER- 107Registers- 108Interrupt Control- 111USB SLAVE INTERFACE- 113Block Diagram- 114External Signals- 115Theory of Operation- 122Endpoint FIFOs (Rx, Tx)- 125ADC INTERFACE CONTROLLER- 127
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.4 9.4.1	External Signals- 86Registers- 86LCD controller datapath- 94Color/Grayscale dithering- 95LCD panel dependent settings- 96Frame data dependent settings- 103Other settings- 105INTERRUPT CONTROLLER- 107Registers- 108Interrupt Control- 111USB SLAVE INTERFACE- 113Block Diagram- 115Registers- 115Theory of Operation- 122Endpoint FIFOs (Rx, Tx)- 125ADC INTERFACE CONTROLLER- 127External Signals- 127External Signals- 127External Signals- 127
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.4 9.4.1 9.4.2	External Signals- 86Registers- 86LCD controller datapath- 94Color/Grayscale dithering- 95LCD panel dependent settings- 96Frame data dependent settings- 103Other settings- 105INTERRUPT CONTROLLER- 107Registers- 108Interrupt Control- 111USB SLAVE INTERFACE- 113Block Diagram- 115Registers- 115Theory of Operation- 122Endpoint FIFOs (Rx, Tx)- 125ADC INTERFACE CONTROLLER- 127External Signals- 127External Signals- 127External Signals- 128Registers- 128
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.4 9.4.1 9.4.2 9.4.3	External Signals- 86Registers- 86LCD controller datapath- 94Color/Grayscale dithering- 95LCD panel dependent settings- 96Frame data dependent settings- 103Other settings- 105INTERRUPT CONTROLLER- 107Registers- 108Interrupt Control- 111USB SLAVE INTERFACE- 113Block Diagram- 114External Signals- 115Registers- 115ADC INTERFACE CONTROLLER- 122Endpoint FIFOs (Rx, Tx)- 125ADC INTERFACE CONTROLLER- 127External Signals- 125ADC INTERFACE- 127External Signals- 128Registers- 128Registers- 128Registers- 128Registers- 128Operation- 128Operation- 128Operation- 136
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.4 9.4.1 9.4.2 9.4.3 9.4.4	External Signals- 86Registers 86LCD controller datapath- 94Color/Grayscale dithering- 95LCD panel dependent settings- 96Frame data dependent settings- 103Other settings- 105INTERRUPT CONTROLLER- 107Registers 108Interrupt Control- 111USB SLAVE INTERFACE- 113Block Diagram- 114External Signals- 115Theory of Operation- 122Endpoint FIFOs (Rx, Tx)- 125ADC INTERFACE CONTROLLER- 127External Signals- 128Registers 128Operation- 128Registers- 128Operation- 128Operation- 128Operation- 128ADC INTERFACE- 128Operation- 128Operation- 124 124
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.5	External Signals- 86Registers- 86LCD controller datapath- 94Color/Grayscale dithering- 95LCD panel dependent settings- 96Frame data dependent settings- 103Other settings- 105INTERRUPT CONTROLLER- 107Registers- 108Interrupt Control- 111USB SLAVE INTERFACE- 113Block Diagram- 114External Signals- 115Theory of Operation- 122Endpoint FIFOs (Rx, Tx)- 125ADC INTERFACE CONTROLLER- 127External Signals- 128Registers- 127External Signals- 128Operation- 128Registers- 128NDC INTERFACE CONTROLLER- 127External Signals- 128NDC INTERFACE CONTROLLER- 127External Signals- 128Noperation- 128UART/SIR- 145
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.5 9.5.1	External Signals- 86Registers- 86LCD controller datapath- 94Color/Grayscale dithering- 95LCD panel dependent settings- 96Frame data dependent settings- 103Other settings- 105INTERRUPT CONTROLLER- 107Registers- 108Interrupt Control- 111USB SLAVE INTERFACE- 113Block Diagram- 114External Signals- 115Theory of Operation- 122Endpoint FIFOs (Rx, Tx)- 125ADC INTERFACE CONTROLLER- 127External Signals- 127External Signals- 127UART/SIR- 128Operation- 128Negisters- 128Negisters- 128Name- 128Registers- 128No Converter- 128No Converter- 128No Converter- 128No Converter- 128No Converter- 142UART/SIR- 145External Signals- 146
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.5 9.5.1 9.5.2	External Signals- 86Registers- 86LCD controller datapath- 94Color/Grayscale dithering- 95LCD panel dependent settings- 96Frame data dependent settings- 103Other settings- 105INTERRUPT CONTROLLER- 107Registers- 108Interrupt Control- 111USB SLAVE INTERFACE- 113Block Diagram- 114External Signals- 115Theory of Operation- 122Endpoint FIFOs (Rx, Tx)- 125ADC INTERFACE CONTROLLER- 127External Signals- 127External Signals- 127Lange of Operation- 127External Signals- 127Lange of Operation- 127External Signals- 127External Signals- 127External Signals- 128Noperation- 128Noperation- 128Registers- 128Operation- 142UART/SIR- 145External Signals- 145External Signals- 147
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.5 9.5.1 9.5.2 9.5.3	External Signals- 86Registers- 86LCD controller datapath- 94Color/Grayscale dithering- 95LCD panel dependent settings- 96Frame data dependent settings- 103Other settings- 105INTERRUPT CONTROLLER- 107Registers- 108Interrupt Control- 111USB SLAVE INTERFACE- 113Block Diagram- 114External Signals- 115Theory of Operation- 122Endpoint FIFOs (Rx, Tx)- 122Endpoint FIFOs (Rx, Tx)- 127External Signals- 127External Signals- 127External Signals- 128Registers- 128Coperation- 136A/D Converter- 142UART/SIR- 145External Signals- 147FIFO Interrupt Mode Operation- 147FIFO Interrupt Mode Operation- 147
9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.5 9.5.1 9.5.2	External Signals- 86Registers- 86LCD controller datapath- 94Color/Grayscale dithering- 95LCD panel dependent settings- 96Frame data dependent settings- 103Other settings- 105INTERRUPT CONTROLLER- 107Registers- 108Interrupt Control- 111USB SLAVE INTERFACE- 113Block Diagram- 114External Signals- 115Theory of Operation- 122Endpoint FIFOs (Rx, Tx)- 125ADC INTERFACE CONTROLLER- 127External Signals- 127External Signals- 127Lange of Operation- 127External Signals- 127Lange of Operation- 127External Signals- 127External Signals- 127External Signals- 128Noperation- 128Noperation- 128Registers- 128Operation- 142UART/SIR- 145External Signals- 145External Signals- 147

9.6.1	External Signals 162 -
9.6.2	Registers 163 -
9.0.2 9.6.3	Smart Card Interface Operation Flow Chart 177 -
9.0.5 9.7	
	SYNCHRONOUS SERIAL INTERFACE (SSI)
9.7.1	Register description 180 -
9.7.2	Overview 189 -
9.7.3	Operational Description 190 -
9.7.4	SSI AC Timming 193 -
9.8	SMC Controller 195 -
9.8.1	External Signals 196 -
9.8.2	Registers 196 -
9.8.3	SMC access using EBI interface 207 -
9.9	TIMER & PWM 209 -
9.9.1	External Signals 210 -
9.9.2	Registers 210 -
9.9.3	<i>Operation- 217</i> -
9.10	WATCHDOG TIMER 235 -
9.10.1	Registers 236 -
9.10.2	Watchdog Timer Operation 238 -
9.11	RTC 243 -
9.11.1	External Signals 244 -
9.11.2	Registers 245 -
9.11.3	Operation 255 -
9.12	2-Wire Serial Bus Interface 259 -
9.12.1	External Signals 260 -
9.12.2	Registers 260 -
9.12.3	Operation
9.13	MATRIX KEYBOARD INTERFACE CONTROLLER
9.13.1	External Signals
9.13.2	Registers 276 -
9.13.3	Operation
9.14	GPIO 289 -
9.14.1	External Signals - 290 -
9.14.1	Registers 290 -
9.14.2	
9.14.5 9.14.4	Operations 309 - GPIO Rise and Fall Time 314 -
9.14.4	GPIO Rise and Fall Time 314 -
10	DEBUG AND TEST INTERFACE 315 -
10.1	Overview 315 -
10.1	SOFTWARE DEVELOPMENT DEBUG AND TEST INTERFACE
10.2	Test Access Port and Boundary-Scan
10.3.1	Reset
10.3.2	Pull-up Register
10.3.3	Instruction Register 318 -
10.3.4	Public Instructions 319 -
10.3.4	
10.3.5	Test Data Register 323 - Boundary Scan Interface Signals 325 -
10.5.0	
11	ELECTRICAL CHARACTERISTICSI
11.1	Absolute Maximum Ratings
11.2	DC CHARACTERISTICS
11.3	A/D CONVERTER ELECTRICAL CHARACTERISTICS
12	APPENDIXI

LIST OF FIGURES

Figure 2-1. 208 Pin diagram	
Figure 2-2. 208 LQFP Dimensions-1	
Figure 2-3. 208 LQFP Dimensions-2 < Detail "A" (Scale 1/30) >	16 -
Figure 2-4. 208 CABGA Top and Side view	16 -
Figure 2-5. 208 CABGA Bottom view	17 -
Figure 4-1. Internal Boot ROM / External Static Memory Map (ROMSWAP=0)	28 -
Figure 4-2. Internal Boot ROM / External Static Memory Map (ROMSWAP=1)	
Figure 4-3. Internal SRAM / External SDRAM Memory Map	
Figure 4-4. Peripherals Address Map	
Figure 5-1. Software Boot Flows	
Figure 6-1. PMU Block Diagram	
Figure 6-2. FCLK Frequency Update When the bit 6 is set	- 49 -
Figure 6-3. FCLK / BCLK relation	
Figure 6-4. PMU Power Management State Diagram	
Figure 6-5. A Cold Reset Event	
Figure 6-6. nPOR / nRESET / SoftwareReset Function	55 -
Figure 6-7. Software Generated Warm Reset	
Figure 6-8. An Externally Generated Warm Reset	
Figure 7-1. SDRAM Controller Block Diagram	
Figure 7-1. SDRAW Controller Block Diagram Figure 7-2. SDRAM Controller Software Example and Memory Operation Diagram	
Figure 7-3. 256Mbitx16 (4Banks) Device Connection	
Figure 7-4. 128Mbitx16 (4Banks) Device Connection	
Figure 7-5. 64Mbitx16 (4Banks) Device Connection	67 -
Figure 7-6. 16Mbitx16 (2Banks) Device Connection	
Figure 7-7. Write Miss Flusing	
Figure 7-8. Read Hit Flusing	
Figure 7-9. Timer timeover Flusing	
Figure 8-1. Data flow at 16-bit width memory	
Figure 8-2. Data flow at 8-bit width memory	
Figure 8-3. 16-bit bank configuration with 8-bit width memory	
Figure 8-4. 8-bit bank configuration with 8-bit width memory	
Figure 8-5. 16-bit bank configuration with 16-bit width memory	
Figure 9-1. Block digram of LCD controller	
Figure 9-2. Pixel display sequence of LD bus	
Figure 9-3. Changing polarity of LCD panel signals	
Figure 9-4. Block diagram of clock source generation	
Figure 9-5. Timing diagram of a line with LLP, LCP, and LD signals	
Figure 9-6. Timing diagram of LFP signal	
Figure 9-7. Timing diagram of a frame be different by the differ	
Figure 9-8. Pixel Display Order for Big and Little-endian Pixel Alignment in 2-bpp Mode	
Figure 9-9. USB Block Diagram	
Figure 9-10. USB Serial Interface Engine	
Figure 9-11. Block diagram of ADC, ADC I/F	
Figure 9-12. ADC Clock & Data sampling clock	
Figure 9-13. ADC operating stop condition	
Figure 9-14. Data loading timing	
Figure 9-15. Data sampling sequence – TRATE is 2'b11 / SSHOT is 1'b0 / SWINVT is 1'b0	
Figure 9-16. Data sampling sequence – TRATE is 2'b11 / SSHOT is 1'b1 / SWINVT is 1'b0	
Figure 9-17. Data sampling sequence – TRATE is 2'b10 / SSHOT is 1'b0 / SWINVT is 1'b1	
Figure 9-18. Interrupt generating timing – TRATE is 2'b11 / SSHOT is 1'b0	
Figure 9-19. Interrupt generating timing – TRATE is 2'b11 / SSHOT is 1'b1	
Figure 9-20. ADC direct access mode	
Figure 9-21. Block diagram of A/D Converter	142 -

Figure 9-22. Timing diagram of A/D Converter	
Figure 9-23. SSI Block Diagram	179 -
Figure 9-24. Transfer Format (Single Transfer)	
Figure 9-25. Transfer Format (Back to Back Transfer)	192 -
Figure 9-26. SMC access using the EBI Interface	207 -
Figure 9-27. Block Diagram of TIMER/PWM	209 -
Figure 9-28. Clock select logic	217 -
Figure 9-29. Non-repeat mode operation	219 -
Figure 9-30. Repeat mode operation	220 -
Figure 9-31. Byte counter operation in non-repeat mode	
Figure 9-32. Byte counter operation in repeat mode	
Figure 9-33. Clock source of T3COUNT is T2MATCH event	223 -
Figure 9-34. Software issued reset command	
Figure 9-35. Output and interrupt generation in repeat mode	
Figure 9-36. Output and interrupt generation in non-repeat mode	
Figure 9-37. Clock select logic	
Figure 9-38. Timing diagram of PWM channel when OUTPUTINVERT = 0	228 -
Figure 9-39. Timing diagram of PWM channel when OUTPUTINVERT = 1	229 -
Figure 9-40. PWM waveform when OUTPUTINVET = 0, duty = 30%	
Figure 9-41. PWM waveform when OUTPUTINVET = 0, duty = 80%	
Figure 9-42. PWM waveform when OUTPUTINVET = 1, duty = 30%	
Figure 9-43. PWM waveform when OUTPUTINVET = 1, duty = 80%	
Figure 9-44. Software issued reset command	
Figure 9-45. RTC Block Diagram	
Figure 9-46. Block diagram of 2-Wire SBI	
Figure 9-47. Connection of devices to the 2-Wire serial bus	
Figure 9-48. Data validity	
Figure 9-49. START and STOP conditions	
Figure 9-50. SCL synchronization between multiple masters	
Figure 9-50. SOL synchronization between multiple masters	
Figure 9-51. Address and data packet of 2-Wire SBI	
Figure 9-52. Address and data packet of 2-wife 3Bi	
Figure 9-55. ACK signal generation Figure 9-54. Waveform when 2-Wire SBI is master transmitter	
Figure 9-54. Waveform when 2-Wire SBI is master receiver	
Figure 9-56. Waveform when 2-Wire SBTs master receiver	
Figure 9-50. Waveform when 2-Wire SBT is slave receiver	
Figure 9-58. Block diagram of keyboard controller	
Figure 9-59. Block diagram of keyboard controller	
Figure 9-60. KSCANO output timing	
Figure 9-61. Clock divider of keyboard controller Figure 9-62. Key scan period and column period	
Figure 9-63. Wakeup interrupt & Key scanning enabled	
Figure 9-64. A flow chart of setting keyboard controller	
Figure 9-65. KBVR0/1 write timing	280 -
Figure 9-66. KSCANO[3:2] are configured for GPIO	
Figure 9-67. Block diagram of GPIO	
Figure 9-68. Alternate port functions	
Figure 9-69. Interrupt request.	
Figure 9-70. De-bouncing of port A	
Figure 9-71. Pad organization	
Figure 9-72. Timing diagram of bi-directional pad (CMOS or TTL)	
Figure 10-1. Test Access Port(TAP) Controller State Transitions	
Figure 10-2. Boundary Scan Block Diagram	
Figure 10-3. Boundary Scan General Timing	
Figure 10-4. Boundary Scan Tri-state Timing	325 -

Figure 10-5. Boundary Scan Reset	Timing	- 326 -
Figure 10-5. Boundary Scan Reset	nining	- 320

LIST OF TABLES

Table 2-1 Pin Signal Type Definition	
Table 2-2 External Signal Functions	
Table 4-1 Top-level address map	27 -
Table 4-2 Peripherals Base Addresses	31 -
Table 5-1. Pin Configuration	33 -
Table 5-2. NAND / MMC Map	34 -
Table 6-1. PMU Register Summary	38 -
Table 6-2. Bit Settings for a Cold RESET Event within PMURSR register	54 -
Table 6-3. Bit Settings for a Software generated Warm Reset within Reset / Status register	56 -
Table 6-4. Bit Settings for a Warm Reset within Reset / Status register	57 -
Table 7-1 SDRAM Controller Register Summary	
Table 7-2 SDRAM Row/Column Address Map	66 -
Table 7-3 SDRAM Device Selection	66 -
Table 8-1 Static Memory Controller Register Summary	74 -
Table 8-2. Timing values for read access in single mode data transfer (BCLK=33MHz)	
Table 8-3. Timing values for read access in burst mode data transfer (BCLK=33MHz)	81 -
Table 8-4. Timing values for write access (BCLK=33MHz)	
Table 9-1. LCD Controller Register Summary	
Table 9-2. LCD Color/Grayscale Intensities and Modulation Rates	95 -
Table 9-3. Interrupt Controller Register Summary	108 -
Table 9-4 USB Slave interface Register Summary	
Table 9-5. USB Supported PID Types	
Table 9-6 USB Supported Setup Requests	
Table 9-7. ADC Controller Register Summary	
Table 9-8 UART/SIR Register Summary	
Table 9-9 Baud Rate with Decimal Divisor at 3.92308MHz Clock Input	153 -
Table 9-10 Smart Card Interface Register Summary	
Table 9-11 Baud Rate with Decimal Divisor at 3.55556MHz Clock Input	
Table 9-12 SmartMedia Controller Register Summary	196 -
Table 9-13. Timer Register Summary	
Table 9-14. Watchdog Timer Register Summary	236 -
Table 9-15 Non-AMBA Signals within RTC Core Block	
Table 9-16. 2-Wire SBI's Register Summary	
Table 9-17. Matrix Keyboard Interface Controller Register Summary	
Table 9-18. Scan rate calculation from CLKSEL	
Table 9-19. Estimated t _{INTR} according to CLKSEL	286 -
Table 9-20. Possible configuration of KSCANO pins when keyboard matrix is connected	287 -
Table 9-21. Possible configuration of KSCANI pins when keyboard matrix is connected	
Table 9-22. Interrupt sources of I/Os (to interrupt controller unit)	312 -
Table 9-23. Propagation delays (ns) for sample pad loads	
Table 11-1. Maximum Ratings	
Table 11-2. Operating Range	
Table 11-3. CMOS signal pin characteristics	
Table 11-4. TTL signal pin characteristics	ii
Table 11-5. A/D converter characteristics	

1 ARCHITECTURAL OVERVIEW

1.1 Processor

The ARM720T core incorporates an 8KB unified write-through cache, and an 8 data entry, 4-address entry write buffer. It also incorporates an MMU with a 64 entry TLB.

1.2 Video

The integrated LCD controller can control color and monochrome STN displays, up to 640x480 (VGA) resolution. 1, 2, 4, and 8 bit-per-pixel is supported and a patented gray scaler can directly generate 16 gray scales.

1.3 Memory

The 16-bit external data path interfaces to ROM or Flash devices. Burst mode ROMs are supported, for increased performance, allowing operating system code to be executed directly from ROM.

1.4 Internal Bus Structure

The HMS30C7210 internal bus organization is based upon the AMBA standard, but with some minor modifications to the peripheral buses (the APBs). There are two main buses in the HMS30C7210:

- The main system bus (the ASB) to which the CPU and memory controllers are connected
- The APB to peripherals are connected

1.4.1 ASB

The ASB is designed to allow the ARM continuous access to both, the ROM and the SDRAM interface. The SDRAM controller straddles both the ASB and the video DMA bus so the LCD can access the SDRAM controller simultaneously with activity on the ASB. This means that the ARM can read code from ROM, or access a peripheral, without being interrupted by video DMA.

The HMS30C7210 uses a modified arbiter to control mastership on the main ASB bus. The arbiter only arbitrates on quad-word boundaries, or when the bus is idle. This is to get the best performance with the ARM720T, which uses a quad-word cache line, and also to get the best performance from the SDRAM, which uses a burst size of eight half-words per access. By arbitrating only when the bus is idle or on quad-word boundaries (A[3:2] = 11), it ensures that cache line fills are not broken up, hence SDRAM bursts are not broken up.

The SDRAM controller controls video ASB arbitration. This is explained in 6.5 Arbitration.

1.4.2 Video bus

The video bus connects the LCD controller with the internal SRAM and the SDRAM controller. Data transfers are DMA controlled. The video bus consists of an address bus, data bus and control signals to/from the internal SRAM and the SDRAM controller. The LCD registers are programmed through the fast APB. The SDRAM

controller arbitrates between ASB, Video access requests. Video always has higher priority than ASB access requests. The splitting ASB/video bus allows slow ASB device accesses internal SRAM and SDRAM without blocking video DMA.

1.4.3 APB

The most APB peripherals do not support DMA transfers. This arrangement of running most of the peripherals at a slower clock, and reducing the load on the faster bus, results in significantly reduced power consumption. The APB bus connects to the main ASB bus via bridges. The APB Bridge takes care of all resynchronization, handing over data and control signals between the ASB and UART clock domains in a safe and reliable manner. USB, LCD Controller, SMC and SPI are operated at the speed of the ASB. Theses are high performance peripherals.

1.5 SDRAM Controller

The SDRAM controller is a key part of the HMS30C7210 architecture. The SDRAM controller has two data ports - one for video DMA and one for the main ASB - and interfaces to 16-bit wide SDRAMs. One to four 16, 64, 128, or 256 Mbits x 16-bit devices are supported, giving a memory size ranging from 2 to 64 Mbytes. The main ASB and video DMA buses are independent, and operate concurrently. The video bus has always higher priority than the main bus. The video interface consists of address, data and control signals. The video access burst size is fixed to 16 words. The address is non-incrementing for words within a burst (as the SDRAM controller only makes use of the first address for each burst request).

1.6 Peripherals

Universal Serial Bus (USB) device controller

The USB device controller is used to transfer data from/to host system like PC in fullspeed (12Mbits/s) mode. No external USB transceiver is necessary.

Universal Asynchronous Receiver and Transmitter (UART)

Six UART ports are implemented. UART0,1 supports Smart Card Interface signals.

IrDA / Modem

IrDA uses UART4 for its SIR transfer in 115 Kbit/s speed. UART5 supports full modem interface signals.

Pulse-Width-Modulated (PWM) Interface

Two PWM output signals are generated. The pins are used as GPIO when not used for PWM.

Matrix Keyboard Interface

Matrix keyboard interface supports 6x6. The pins are used as GPIO when not used for matrix keyboards.

ADC

3 channel ADC is implemented for touch panel, monitoring of battery voltage or general purpose.

PLL

CPU, video and USB clocks are generated by two PLLs with 6 MHz input clock.

1.7 Power management

The HMS30C7210 incorporates advanced power management functions, allowing the whole device to be put into a standby mode, when only the real time clock runs. The SDRAM is put into low-power self-refresh mode to preserve its contents. The HMS30C7210 may be forced out of this state by either a real-time clock wake-up interrupt, a user wake-up event (which would generally be a user pressing the "on" key) or by the UART ring-indicate input. The power management unit (PMU) controls the safe exit from standby mode to operational mode, ensuring that SDRAM contents are preserved. In addition, halt and slow modes allow the processor to be halted or run at reduced speed to reduce power consumption. The processor can be quickly brought out of the halted state by a peripheral interrupt. The advanced power management unit controls all this functionality. In addition, individual devices and peripherals may be powered down when they are not in use. The HMS30C7210 is designed for battery-powered portable applications and incorporates innovative design features in the bus structure and the PMU to reduce power consumption. The APB bus allows peripherals to be clocked slowly hence reducing power consumption. The use of two buses reduces the number of nodes that are toggled during a data access, and thereby further reducing power consumption. In addition, clocks to peripherals that are not active can also be gated.

1.7.1 Clock gating

The high performance peripherals, such as the SDRAM controller and the LCD controller, run most of the time at high frequencies and careful design, including the use of clock gating, has minimized their power consumption. Any peripherals can be powered down completely when not in use.

1.7.2 PMU

The Power Management Unit (PMU) is used to control the overall state the system is in. The system can be in one of five states:

RUN

The system is running normally. All clocks are running (except where gated locally). The SDRAM controller is performing normal refresh.

SLOW

The CPU is switched into FastBus mode, and hence runs at the BCLK rate (half the FCLK rate). This is the default mode after exiting DEEP SLEEP mode or system power on.

IDLE

In this mode, the PMU becomes the bus master until there is either a fast or normal interrupt for the CPU.

This will cause the clocks in the CPU to stop when it attempts an ASB access. The HMS30C7210 can enter this mode by writing 0x2 to the bits [2:0] of the PMUMR when in RUN or SLOW mode, or by WakeUp signal activation while in SLEEP or DEEP SLEEP mode.

SLEEP

In this mode, the SDRAM is put into self-refresh mode, and internal clocks are gated off. This mode can only be entered from IDLE mode (the PMU bus master must have the mastership of the ASB before this mode can be entered). The PMU must be the bus master to ensure that the system is stopped in a safe state, and is not half way through a SDRAM write (for example). Both the Video and Communication clocks (VCLK and CCLK) should be disabled before entering this state.

Usually the CPU would only drop in at this mode on the way to the DEEP SLEEP mode.

DEEP SLEEP

In the DEEP SLEEP mode, the crystal oscillator for the 6-MHz PLL input clock and the PLLs are disabled. This is the lowest power state available. Only the 32-KHz RTC oscillator runs and provides clocks for the RTC logic and the debouncing logic of the PMU, which runs at the 4-KHz frequency (i.e. the RTC clock frequency divided by 8). Everything else is powered down, and SDRAM is in self refresh mode. This is the normal system "off" mode.

The HMS30C7210 can get out of the SLEEP and DEEP SLEEP modes either by a user wake-up event (generally pressing the "On" key), by an RTC wake-up alarm, or by a modem ring indicate event. These wake-up sources go directly to the PMU.

1.8 Test and debug

The HMS30C7210 incorporates the ARM standard test interface controller (TIC) allowing 32-bit parallel test vectors to be passed onto the internal bus. This allows access to the ARM720T macro-cell core, and also to memory mapped devices and peripherals within the HMS30C7210. In addition, the ARM720T includes support for the ARM debug architecture (Embedded ICE), which makes use of a JTAG boundary scan port to support debug of code on the embedded processor. The same boundary scan port is also used to support a normal pad-ring boundary scan for board level test applications.

2 SIGNAL DESCRIPTION

2.1 208-Pin Diagram

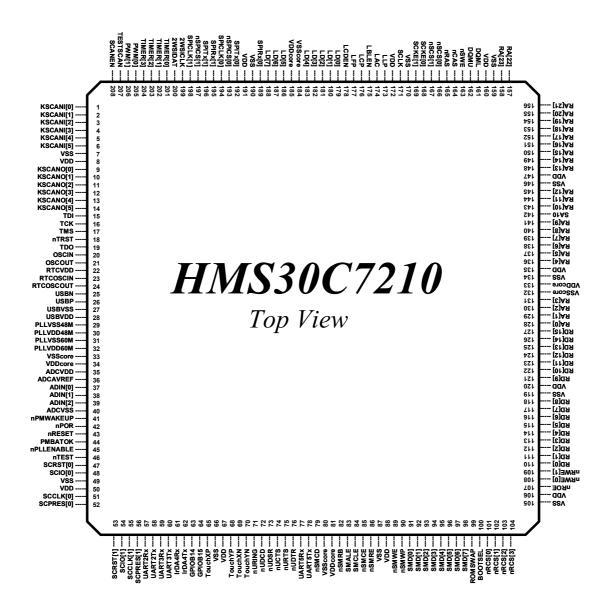


Figure 2-1. 208 Pin diagram

2.2 208 Pin / Ball Name

Pin	Ball	PAD	Pin	Ball	PAD	Pin	Ball	PAD	Pin	Ball	PAD
No.	No.	Name	No.	No.	Name	No.	No.	Name	No.	No.	Name
1	A1	KSCANI[0]	53	U1	SCRST[1]	105	U17	VSS	157	A17	RA[22]
2	B2	KSCANI[1]	54	T2	SCIO[1]	106	T16	VDD	158	B16	RA[23]
3	B1	KSCANI[2]	55	U2	SCCLK[1]	107	T17	nROE	159	A16	VSS
4	C1	KSCANI[3]	56	U3	SCPRES[1]	108	R17	nRWE[0]	160	A15	VDD
5	D3	KSCANI[4]	57	R4	UART2Rx	109	P15	nRWE[1]	161	C14	DQML
6	C2	KSCANI[5]	58	T3	UART2Tx	110	R16	RD[0]	162	B15	DQMU
7	D1	VSS	59	U4	UART3Rx	111	P17	RD[1]	163	A14	nSWE
8	E4	VDD	60	P5	UART3Tx	112	N14	RD[2]	164	D13	nCAS
9	E3	KSCANO[0]	61	R5	IrDA4Rx	113	N15	RD[3]	165	C13	nRAS
10	D2	KSCANO[1]	62	T4	IrDA4Tx	114	P16	RD[4]	166	B14	nSCS[0]
11	E2	KSCANO[2]	63	T5	GPIOB14	115	N16	RD[5]	167	B13	nSCS[1]
12	F3	KSCANO[3]	64	R6	GPIOB15	116	M15	RD[6]	168	C12	SCKE[0]
13	F4	KSCANO[4]	65	P6	TouchXP	117	M14	RD[7]	169	D12	SCKE[1]
14	E1	KSCANO[5]	66	U5	VSS	118	N17	RD[8]	170	A13	VSS
15	F2	TDI	67	T6	VDD	119	M16	VSS	171	B12	SCLK
16	G3	TCK	68	R7	TouchYP	120	L15	VDD	172	C11	VDD
17	G4	TMS	69	P7	TouchXN	121	L14	RD[9]	173	D11	LLP
18	F1	nTRST	70	U6	TouchYN	122	M17	RD[10]	174	A12	LAC
19	G2	TDO	71	T7	nURING	123	L16	RD[11]	175	B11	LBLEN
20	H3	OSCIN	72	R8	nUDCD	124	K15	RD[12]	176	C10	LCP
21	H4	OSCOUT	73	P8	nUDSR	125	K14	RD[13]	177	D10	LFP
22	G1	RTCVDD	74	U7	nUCTS	126	L17	RD[14]	178	A11	LCDEN
23	H2	RTCOSCIN	75	T8	nURTS	127	K16	RD[15]	179	B10	LD[0]
24	J3	RTCOSCOUT	76	R9	nUDTR	128	J15	RA[0]	180	C9	LD[1]
25	J4	USBN	77	P9	UART5Rx	129	J14	RA[1]	181	D9	LD[2]
26	H1	USBP	78	U8	UART5Tx	130	K17	RA[2]	182	A10	LD[3]
27	J2	USBVSS	79	Т9	nSMCD	131	J16	RA[3]	183	B9	LD[4]
28	K3	USBVDD	80	R10	VSScore	132	H15	VSScore	184	C8	VSScore
29	K4	PLLVSS48M	81	P10	VDDcore	133	H14	VDDcore	185	D8	VDDcore
30	J1	PLLVDD48M	82	U9	nSMRB	134	J17	VSS	186	A9	LD[5]
31	K2	PLLVSS60M	83	T10	SMALE	135	H16	VDD	187	B8	LD[6]
32	L3	PLLVDD60M	84	R11	SMCLE	136	G15	RA[4]	188	C7	LD[7]
33	L4	VSScore	85	P11	nSMCE	137	G14	RA[5]	189	D7	SPIRx[0]
34	K1	VDDcore	86	U10	nSMRE	138	H17	RA[6]	190	A8	VSS
35	L2	ADCVDD	87	T11	VSS	139	G16	RA[7]	191	B7	VDD
36	M3	ADCVREF	88	R12	VDD	140	F15	RA[8]	192	C6	SPITx[0]
37	M4	ADIN[0]	89	P12	nSMWE	141	F14	RA[9]	193	D6	nSPICS[0]
38	L1	ADIN[1]	90	U11	nSMWP	142	G17	SA10	194	A7	SPICLK[0]
39	M2	ADIN[2]	91	T12	SMD[0]	143	F16	RA[10]	195	B6	SPIRx[1]
40	N3	ADCVSS	92	R13	SMD[1]	144	E15	RA[11]	196	C5	SPITx[1]
41	N4	nPMWAKEUP	93	P13	SMD[2]	145	E14	RA[12]	197	D5	nSPICS[1]
42	M1	nPOR	94	U12	SMD[3]	146	F17	VSS	198	A6	SPICLK[1]
43	N2	nRESET	95	T13	SMD[4]	147	E16	VDD	199	B5	2WSICLK
44	P3	PMBATOK	96	R14	SMD[5]	148	D15	RA[13]	200	C4	2WSIDAT
45	P4	nPLLENABLE	97	P14	SMD[6]	149	D14	RA[14]	201	D4	TIMER[0]
46	N1	nTEST	98	U13	SMD[7]	150	E17	RA[15]	202	A5	TIMER[1]
47	R3	SCRST[0]	99	R15	ROMSWAP	151	C15	RA[16]	203	C3	TIMER[2]
48	P2	SCIO[0]	100	T14	BOOTSEL	152	D16	RA[17]	204	B4	TIMER[3]
49	P1	VSS	101	U14	nRCS[0]	153	D17	RA[18]	205	A4	PWM[0]
50	R1	VDD	102	U15	nRCS[1]	154	C17	RA[19]	206	A3	PWM[1]
51	R2	SCCLK[0]	103	T15	nRCS[2]	155	C16	RA[20]	207	B3	TESTSCAN
52	T1	SCPRES[0]	104	U16	nRCS[3]	156	B17	RA[21]	208	A2	SCANEN

2.2.1 LQFP Type Dimensions

- All dimensions in mm.



Figure 2-2. 208 LQFP Dimensions-1

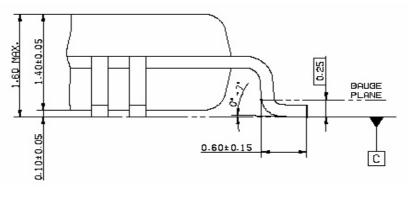
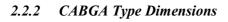



Figure 2-3. 208 LQFP Dimensions-2 < Detail "A" (Scale 1/30) >

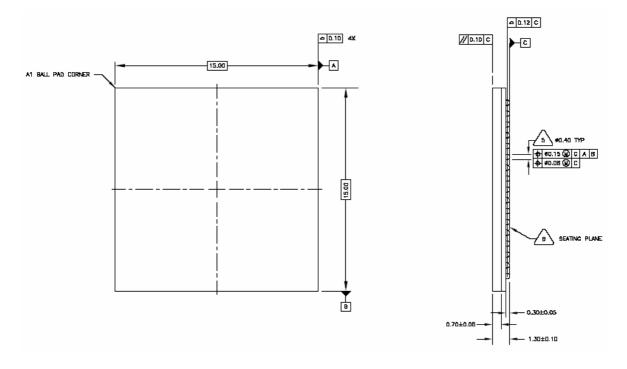


Figure 2-4. 208 CABGA Top and Side view

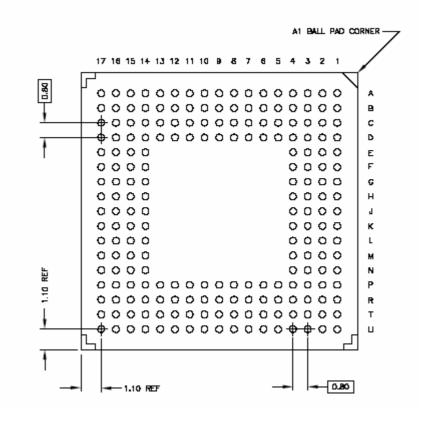


Figure 2-5. 208 CABGA Bottom view

2.3 Pin Descriptions

Table 2-2 describes the function of all the external signals to the HMS30C7210.

Туре	Description	Туре	Description	
0	Output	AO	Analog Output	
I	Input	AI	Analog Input	
10	Input/Output	AIO	Analog Input/Output	
IS	Input with Schmitt level input threshold	Р	Power input	
U	Suffix to indicate integral pull-up	D	Suffix to indicate integral pull-down	

Table 2-1 Pin Signal Type Definition

Function	Signal Name	Signal Type	LQFP Pin Number	Description		
			179~183	LCD data bus		
	LD[7:0]	0	186~188	LD[3:0] for 4bit bus LCD and LD[7:0] for 8-bit bus LCD		
	LCP	0	176	LCD clock pulse		
	LLP	0	173	LCD line pulse		
LCD	LFP	0	177	LCD frame pulse		
	LAC	0	174	LCD AC bias		
		0	178	Display enable signal for LCD		
	LCDEN	0		Enables high voltage to LCD		
	LBLEN	0	175	LCD backlight enable		
			128~131	ROM address bus		
		0	136~141			
	RA[24:0]	0	143~145			
SMI			148~158			
(Static Memory	RD[15:0]	10	110~118	ROM data bus		
Interface)	KD[13.0]	10	121~127			
	nRCS[3:0]	0	101~104	ROM chip select outputs		
	nROE	0	107	ROM output enable signal		
	nRWE[1:0]	0	108~109	ROM write enable signals		
		0	128~131	SDRAM address bus		
	RA[14:11],[9:0]		136~141			
	100[14.11],[3.0]		144~145			
			148~149			
	SA10	0	142	SDRAM address bus (for PRECHARGE command)		
	RD[15:0]	10	110~118	SDRAM data bus		
			121~127			
SDRAM Interface	SCLK	0	171	SDRAM clock output		
	SCKE[1:0]	0	168~169	SDRAM clock enable outputs		
	nRAS	0	165	SDRAM row address select output		
	nCAS	0	164	SDRAM column address select output		
	nSWE	0	163	SDRAM write enable output		
	nSCS[1:0]	0	166~167	SDRAM chip select outputs		
	DQML	0	161	SDRAM lower data byte enable		
	DQMU	0	162	SDRAM upper data byte enable		
Creart Card	SCIO[1:0]	10	48,54	SmartCard data I/O (UART 0,1 Tx)		
Smart Card Interface	SCRST[1:0]	10	47,53	SmartCard reset outputs (UART 0,1 Rx)		
(UART 0,1)	SCPRES[1:0]	I	52,56	SmartCard presence detection (not used at UART mode)		
	SCCLK[1:0]	0	51,55	SmartCard clock outputs (not used at UART mode)		
	UART2Tx	0	58	UART2 serial data output		
UART 2	UART2Rx	1	57	UART2 serial data input		
		· ·				

2.3.1 External Signal Functions

Function	Signal Name	Signal Type	LQFP Pin Number	Description
UART 3	UART3Tx	0	60	UART3 serial data output
OAITI O	UART3Rx		59	UART3 serial data input
IrDA	IrDA4Tx	0	62	IrDA serial data output (UART4 Tx)
(UART 4)	IrDA4Rx	I	61	IrDA serial data input (UART4 Rx)
	UART5Tx	0	78	UART5 serial data output
	UART5Rx	I	77	UART5 serial data input
UART 5	nUDCD	I	72	UART5 data carrier detect input
(For a Modem	nUDSR		73	UART5 data set ready input
device	nUCTS	I	74	UART5 clear to send input
application)	nUDTR	0	76	UART5 data terminal ready
	nURTS	0	75	UART5 request to send
	nURING	I	71	UART5 ring input signal
	SPITx[1:0]	0	192,196	SPI data output
SSI	SPIRx[1:0]	I	189,195	SPI data input
(SPI)	nSPICS[1:0]	0	193,197	SPI chip select signal
	SPICLK[1:0]	0	194,198	SPI clock output
014/01	2WSICLK	10	199	2WSI clock input/output
2WSI	2WSIDAT	10	200	2WSI data input/output
	USBP	AIO	26	USB positive signal
	USBN	AIO	25	USB negative signal
USB	USBVDD	P	28	USB analog Vdd
	USBVSS	P	27	USB analog Vss
	TIMER[3:0]	0	201~204	Timer data output
TIMER, PWM	PWM[1:0]	0	205~206	Pulse Width Modulator data output
	KSCANO[5:0]	0	9~14	Matrix keyboard scan output
Matrix Keyboard	KSCANI[5:0]	<u> </u>	1~6	Matrix keyboard scan input
	SMD[7:0]	10	91~98	SMC bi-directional data signal
	nSMWP	0	90	SMC bi-directional data signal
	nSMWE	0	89	SMC write enable
SMC	SMALE	0	83	SMC while enable
(SmartMedia	SMCLE	0	84	SMC command latch enable
Card)	nSMCD	<u> </u>	79	SMC continuand later enable
00.0)	nSMCE	0	85	SMC chip enable
	nSMRE	0	86	SMC read enable
	nSMRB	<u> </u>	82	SMC ready/busy signal
	TouchXP	10	65	Touch screen switch X-positive drive
	TouchXN	0	69	Touch screen switch X-negative drive
	TouchYP	10	68	Touch screen switch Y-negative drive
	T 1301	0		- · · · · · · · · · · · · · · · · · · ·
ADC	ADIN[2:0]	AI	70 37~39	ADC input for battery, touch
100	RTCVDD		22	RTC Vdd
	ADCVDD	P	35	ADC analog Vdd
	ADCVSS	P	40	ADC analog Vss
	ADCVREF	AI	36	ADC reference voltage
	PLLVDD48M	P	30	PLL 48MHz analog Vdd
		P		PLL 40MHZ analog Vod
PLL	PLLVSS48M		29	
	PLLVDD60M	<u>Р</u> Р	32	PLL 60MHz analog Vdd
	PLLVSS60M		31	PLL 60MHz analog Vss
GPIO	GPIOA[11:0]	10	1~6,9~14	General purpose input/output signals
	GPIOB[27:0]	Ю	47,48,51~65,68 ~78	General purpose input/output signals
	GPIOC[15:0]	Ю	79,82~86, 89~98	General purpose input/output signals

Function	Signal Name	Signal	LQFP	Description	
		Туре	Pin Number		
			103,104,161~16	General purpose input/output signals	
	GPIOD[24:0]	10	9,173~183,186~		
			188		
	GPIOE[15:0]	10	189,192~206	General purpose input/output signals	
Boot	ROMSWAP	I	99	Swap internal ROM area / external Flash ROM area	
Boot	BOOTSEL	1	100	Select boot bus width and direction (SMC/MMC)	
	nPOR	IS	42	Power on reset input. Schmitt level input with pull-up	
System	nPMWAKEUP	IS	41	Wake-up "on-key" input.	
System	nRESET	10	43	Reset input	
	PMBATOK	I	44	Main battery ok	
	RTCOSCIN		23	RTC oscillator input	
Oppillator	RTCOSCOUT	0	24	RTC oscillator output	
Oscillator	OSCIN		20	Main oscillator input	
	OSCOUT	0	21	Main oscillator output	
		D	34,81,133,	Core Vdd supply (3.3V)	
	VDDCore	Р	185	,	
	VSSCore	Р	33,80,132,184	Core Vss supply	
			8,50,67,88	IO Vdd supply (3.3V)	
Digital Power /	VDD	Р	106,120,135,14		
Ground			7,160,172,		
			191		
			7,49,66,87	IO Vss supply	
	VSS	Р	105,119,134,14		
			6,159,170,		
	TOK		190		
	TCK	IU	16	JTAG boundary scan and debug test clock	
	nTRST	ID	18	JTAG boundary scan and debug test reset	
JTAG	TMS	IU	17	JTAG boundary scan and debug test mode select	
	TDI	IU	15	JTAG boundary scan and debug test data input	
	TDO	0	19	JTAG boundary scan and debug test data output	
	nPLLENABLE		45	PLL enable input	
Test	TESTSCAN	ID	207	Scan test mode enable	
	SCANEN	ID	208	Scan chain pass enable	
	nTEST	IU	46	Test mode select input	

Table 2-2 External Signal Functions

2.3.2 Pin Specific Description

Key to PAD types : O (Output), I (Input), IO (Input / Output), A (Analog), C (Crystal Oscillator), OD (Output Open Drain), S (Input Schmitt level), D (Input Pull-Down), U (Input Pull-Up), 1x (CMOS PAD 0.8mA), 8mA (TTL PAD)

D:	nTEST=1 && nPLLENABLE=0			PAD	DAD	D. i .	
Pin	Primary	GPIO En	Muxed Func.	Direction	PAD Type	Drive Strength	Function
1	KSCANI[0]	GPIOA[0]		10		1x	Matrix Keyboard Scan Bus Input
2	KSCANI[1]	GPIOA[1]		10		1x	Matrix Keyboard Scan Bus Input
3	KSCANI[2]	GPIOA[2]		10		1x	Matrix Keyboard Scan Bus Input
4	KSCANI[3]	GPIOA[3]		10		1x	Matrix Keyboard Scan Bus Input
5	KSCANI[4]	GPIOA[4]		10		1x	Matrix Keyboard Scan Bus Input
6	KSCANI[5]	GPIOA[5]		10		1x	Matrix Keyboard Scan Bus Input
7	VSS						
8	VDD						
9	KSCANO[0]	GPIOA[6]		10	OD	1x	Matrix Keyboard Scan Bus Output
10	KSCANO[1]	GPIOA[7]		10	OD	1x	Matrix Keyboard Scan Bus Output
11	KSCANO[2]	GPIOA[8]		10	OD	1x	Matrix Keyboard Scan Bus Output
12	KSCANO[3]	GPIOA[9]		10	OD	1x	Matrix Keyboard Scan Bus Output
13	KSCANO[4]	GPIOA[10]		10	OD	1x	Matrix Keyboard Scan Bus Output
14	KSCANO[5]	GPIOA[11]		10	OD	1x	Matrix Keyboard Scan Bus Output
15	TDI			1	U		JTAG Data Input
16	TCK				U		JTAG Clock Input
17	TMS			1	U		JTAG Mode Sel.
18	nTRST				D		JTAG Reset
19	TDO			0		1x	JTAG Data Output
20	OSCIN			C			Main Oscillator In
21	OSCOUT			-			Main Oscillator Out
22	RTCVDD						RTC VDD
23	RTCOSCIN			A			RTC Oscillator In
24	RTCOSCOUT			A			RTC Oscillator Out
25	USBN			A			USB Transceiver Neg. Data I/O
26	USBP			A			USB Transceiver Pos. Data I/O
27	USBVSS						
28	USBVDD						
29	PLLVSS48M						
30	PLLVDD48M						
31	PLLVSS60M						
32	PLLVDD60M						
33	VSScore			A			Core VSS
34	VDDcore			A			Core VDD
35	ADCVDD			Π			
36	ADCVREF			A			ADC Ref. Voltage
37	ADIN[0]			A			ADC Data Input
							ADC Data Input
38	ADIN[1]			A			ADC Data Input
39	ADIN[2]			А			
40	ADCVSS nPMWAKEUP			1	011		Wake up "On Key" Innut
41 42				1	SU SU		Wake-up "On-Key" Input Power On Reset Input
	nPOR			10		1.	-
43	nRESET			10	U	1x	Reset Input
44				<u> </u>	U		Main Battery OK
45	nPLLENABLE			1			PLL Enable Input
46	nTEST				U	4	Test Mode Sel. In
47	SCRST[0]	GPIOB[0]	UARTORX	10	OD	1x	SmartCard Reset Output (UART0 Rx)
48	SCIO[0]	GPIOB[1]	UART0Tx	10	OD	1x	SmartCard Data I/O (UART0 Tx)
49	VSS						

D'	nTEST=1 && nPLLENABLE=0			DAD		Duine		
Pin	Primary	GPIO En	Muxed Func.	PAD Direction	PAD Type	Drive Strength	Function	
50	VDD							
51	SCCLK[0]	GPIOB[2]		10	OD	1x	SmartCard Clock Output	
52	SCPRES[0]	GPIOB[3]		10		1x	SmartCard Detect Input	
53	SCRST[1]	GPIOB[4]	UART1Rx	10	OD	1x	SmartCard Reset Output (UART1 Rx)	
54	SCIO[1]	GPIOB[5]	UART1Tx	10	OD	1x	SmartCard Data I/O (UART1 Tx)	
55	SCCLK[1]	GPIOB[6]		10	OD	1x	SmartCard Clock Output	
56	SCPRES[1]	GPIOB[7]		10		1x	SmartCard Detect Input	
57	UART2Rx	GPIOB[8]		10		1x	UART2 Serial Data Input	
58	UART2Tx	GPIOB[9]		10		1x	UART2 Serial Data Output	
59	UART3Rx	GPIOB[10]		10		1x	UART3 Serial Data Input	
60	UART3Tx	GPIOB[11]		10		1x	UART3 Serial Data Output	
61	IrDA4Rx	GPIOB[12]	UART4Rx	10		1x	IrDA Serial Data Input (UART4 Rx)	
62	IrDA4Tx	GPIOB[13]	UART4Tx	10		1x	IrDA Serial Data Output (UART4 Tx)	
63	GPIOB14	GPIOB[14]		10		1x	General Purpose I/O (To Deep Sleep source)	
64	GPIOB15	GPIOB[15]		10		1x	General Purpose I/O (HotSync wake-up source)	
65	TouchXP	GPIOB[16]		10		1x	Touch Screen Switch X-Pos. Out	
66	VSS							
67	VDD							
68	TouchYP	GPIOB[17]		10		1x	Touch Screen Switch Y-Pos. Out	
69	TouchXN	GPIOB[18]		10		1x	Touch Screen Switch X-Neg. Out	
70	TouchYN	GPIOB[19]		10		1x	Touch Screen Switch N-Neg. Out	
71	nURING	GPIOB[20]		10		1x	UART5 Ring Input (Wakeup to PMU)	
72	nUDCD	GPIOB[21]		10		1x	UART5 Data Carrier Detect In	
73	nUDSR	GPIOB[22]		10		1x	UART5 Data Set Ready Input	
74	nUCTS	GPIOB[23]		10		1x	UART5 Clear To Send Input	
75	nURTS	GPIOB[24]		10		1x	UART5 Request To Send Output	
76	nUDTR	GPIOB[25]		10		1x	UART5 Data terminal ready out	
77	UART5Rx	GPIOB[26]		10		1x	UART5 Serial Data Input	
78	UART5Tx	GPIOB[27]		10		1x	UART5 Serial Data Output	
79	nSMCD	GPIOC[0]		10		1x	SMC card detect In	
80	VSScore							
81	VDDcore							
82	nSMRB	GPIOC[1]		10		1x	SMC ready/busy in	
83	SMALE	GPIOC[2]		10		1x	SMC address latch enable Output	
84	SMCLE	GPIOC[3]		10		1x	SMC command latch enable Output	
85	nSMCE	GPIOC[4]		10		1x	SMC chip En Out	
86	nSMRE	GPIOC[5]		10		1x	SMC read En Out	
87	VSS							
88	VDD							
89	nSMWE	GPIOC[6]		10		1x	SMC write En Out	
90	nSMWP	GPIOC[7]		10		1x	SMC write Protect Output	
91	SMD[0]	GPIOC[8]		10		1x	SMC Bidir. Data I/O	
92	SMD[1]	GPIOC[9]		10		1x	SMC Bidir. Data I/O	
93	SMD[2]	GPIOC[10]		10		1x	SMC Bidir. Data I/O	
94	SMD[3]	GPIOC[11]		10		1x	SMC Bidir. Data I/O	
95	SMD[4]	GPIOC[12]		10		1x	SMC Bidir. Data I/O	
96	SMD[5]	GPIOC[13]		10		1x	SMC Bidir. Data I/O	
97	SMD[6]	GPIOC[14]		10		1x	SMC Bidir. Data I/O	
98	SMD[7]	GPIOC[15]		10		1x	SMC Bidir. Data I/O	
99	ROMSWAP			1			Swap Internal ROM / External FlashROM	
100	BOOTSEL						Select BootBus Width and Direction (SMC/MMC)	
101	nRCS[0]			0		3x	ROM Chip Sel. Out	
102	nRCS[1]			0		3x	ROM Chip Sel. Out	

Dia	nTEST=1 && nPLLENABLE=0			PAD	PAD	Drive	
Pin	Primary	GPIO En	Muxed Func.	Direction	Туре	Strength	Function
103	nRCS[2]	GPIOD[0]		10		3x	ROM Chip Sel. Out
104	nRCS[3]	GPIOD[1]		10		3x	ROM Chip Sel. Out
105	VSS						
106	VDD						
107	nROE			0		3x	ROM Out En Out
108	nRWE[0]			0		3x	ROM Write En Out
109	nRWE[1]			0		3x	ROM Write En Out
110	RD[0]		SD[0]	10		8mA	ROM Bidir. Data I/O
111	RD[1]		SD[1]	10		8mA	ROM Bidir. Data I/O
112	RD[2]		SD[2]	10		8mA	ROM Bidir. Data I/O
113	RD[3]		SD[3]	10		8mA	ROM Bidir. Data I/O
114	RD[4]		SD[4]	10		8mA	ROM Bidir. Data I/O
115	RD[5]		SD[5]	10		8mA	ROM Bidir. Data I/O
116	RD[6]		SD[6]	10		8mA	ROM Bidir. Data I/O
117	RD[7]		SD[7]	10		8mA	ROM Bidir. Data I/O
118	RD[8]		SD[8]	10		8mA	ROM Bidir. Data I/O
119	VSS						
120	VDD						
121	RD[9]		SD[9]	10		8mA	ROM Bidir. Data I/O
122	RD[10]		SD[10]	IO		8mA	ROM Bidir. Data I/O
123	RD[11]		SD[11]	10		8mA	ROM Bidir. Data I/O
124	RD[12]		SD[12]	10		8mA	ROM Bidir. Data I/O
125	RD[13]		SD[13]	IO		8mA	ROM Bidir. Data I/O
126	RD[14]		SD[14]	10		8mA	ROM Bidir. Data I/O
127	RD[15]		SD[15]	10		8mA	ROM Bidir. Data I/O
128	RA[0]		SA[0]	10		8mA	ROM Address Out
129	RA[1]		SA[1]	10		8mA	ROM Address Out
130	RA[2]		SA[2]	10		8mA	ROM Address Out
131	RA[3]		SA[3]	10		8mA	ROM Address Out
132	VSScore						
133	VDDcore						
134	VSS						
135	VDD						
136	RA[4]		SA[4]	10		8mA	ROM Address Out
137	RA[5]		SA[5]	10		8mA	ROM Address Out
138	RA[6]		SA[6]	10		8mA	ROM Address Out
139	RA[7]		SA[7]	10		8mA	ROM Address Out
140	RA[8]		SA[8]	10		8mA	ROM Address Out
141	RA[9]		SA[9]	10		8mA	ROM Address Out
142	SA10		SA[10]	0		8mA	ROM Address Out
143	RA[10]		0.11/5	10		8mA	ROM Address Out
144	RA[11]		SA[11]	10		8mA	ROM Address Out
145	RA[12]		SA[12]	10		8mA	ROM Address Out
146	VSS						
147	VDD		0.4/423	10		0	DOMANIA O I
148	RA[13]		SA[13]	10		8mA	ROM Address Out
149	RA[14]		SA[14]	10		8mA	ROM Address Out
150	RA[15]			10		8mA	ROM Address Out
151	RA[16]			0		8mA	ROM Address Out
152	RA[17]			0		8mA	ROM Address Out
153	RA[18]			0		8mA	ROM Address Out
154	RA[19]			0		8mA	ROM Address Out
155	RA[20]			0		8mA	ROM Address Out

Pin	nTEST=1 && nPLLENABLE=0			PAD	PAD	Drive		
PIN	Primary	GPIO En	Muxed Func.	Direction	Туре	Strength	Function	
156	RA[21]			0		8mA	ROM Address Out	
157	RA[22]			0		8mA	ROM Address Out	
158	RA[23]			0		8mA	ROM Address Out	
159	VSS							
160	VDD							
161	DQML	GPIOD[2]		10		8mA	SDRAM Lower Data Mask Output	
162	DQMU	GPIOD[3]		10		8mA	SDRAM Upper Data Mask Output	
163	nSWE	GPIOD[4]		10		8mA	SDRAM Write Enable Output	
164	nCAS	GPIOD[5]		10		8mA	SDRAM Column Address Select Out	
165	nRAS	GPIOD[6]		10		8mA	SDRAM Row Address Select Out	
166	nSCS[0]	GPIOD[7]		10		8mA	SDRAM Chip Select Output	
167	nSCS[1]	GPIOD[8]		10		8mA	SDRAM Chip Select Output	
168	SCKE[0]	GPIOD[9]		10		8mA	SDRAM Clock Enable Output	
169	SCKE[1]	GPIOD[10]		10		8mA	SDRAM Clock Enable Output	
170	VSS			10		UIIIA	ODIVINI Olock Enable Output	
171	SCLK			10		8mA	SDRAM Clock I/O (For FBCLK)	
172	VDD			10		OIIIA	SDRAW CIOCK I/O (I OI I BOER)	
172	LLP			10		1x	LCD Line Pulse	
		GPIOD[11]					LCD Line Fuise	
174	LAC	GPIOD[12]		10		1x		
175	LBLEN	GPIOD[13]		10 10		1x	LCD Back-Light En	
176	LCP	GPIOD[14]		-		1x	LCD Clock Pulse	
177	LFP	GPIOD[15]		10		1x	LCD Frame Pulse	
178	LCDEN	GPIOD[16]		10		1x	LCD Display En	
179	LD[0]	GPIOD[17]		10		1x	LCD Data Bus	
180	LD[1]	GPIOD[18]		10		1x	LCD Data Bus	
181	LD[2]	GPIOD[19]		10		1x	LCD Data Bus	
182	LD[3]	GPIOD[20]		10		1x	LCD Data Bus	
183	LD[4]	GPIOD[21]		10		1x	LCD Data Bus	
184	VSScore							
185	VDDcore							
186	LD[5]	GPIOD[22]		10		1x	LCD Data Bus	
187	LD[6]	GPIOD[23]		10		1x	LCD Data Bus	
188	LD[7]	GPIOD[24]		10		1x	LCD Data Bus	
189	SPIRx[0]	GPIOE[0]		10		1x	SPI Data In	
190	VSS							
191	VDD							
192	SPITx[0]	GPIOE[1]		10		1x	SPI Data Output	
193	nSPICS[0]	GPIOE[2]		10		1x	SPI Chip Select	
194	SPICLK[0]	GPIOE[3]		10		1x	SPI Clock Output	
195	SPIRx[1]	GPIOE[4]		10		1x	SPI Data In	
196	SPITx[1]	GPIOE[5]		10		1x	SPI Data Output	
197	nSPICS[1]	GPIOE[6]		10		1x	SPI Chip Select	
198	SPICLK[1]	GPIOE[7]		10		1x	SPI Clock Output	
199	2WSICLK	GPIOE[8]		10	OD	1x	2WSI Clock I/O	
200	2WSIDAT	GPIOE[9]		10	OD	1x	2WSI Data I/O	
201	TIMER[0]	GPIOE[10]		10		1x	Timer Data Output	
202	TIMER[1]	GPIOE[11]		10		1x	Timer Data Output	
203	TIMER[2]	GPIOE[12]		10		1x	Timer Data Output	
200	TIMER[3]	GPIOE[12]		10		1x	Timer Data Output	
204	PWM[0]	GPIOE[14]		10		1x	PWM Data Output	
205	PWM[1]	GPIOE[14]		10		1x	PWM Data Output	
					Р	14		
207	TESTSCAN			1	D		TEST Signal Input	
208	SCANEN			I	D		TEST Signal Input	

3 ARM720T MACROCELL

3.1 ARM720T Macrocell

For details of the ARM720T, please refer to the **ARM720T Data Sheet** (DDI 0087).

4 MEMORY MAP

There are five main memory map divisions, outlined in Table 4-1 Top-level address map

Function	Base Address (Hex)	Size	Description
	0x0000.0000	2 Kbytes	Internal Boot ROM
	0x0000 0800		Reserved
Internal Boot ROM /	0x0100 0000	16 Mbytes	External Static Memory chip select 1
	0x0200 0000	16 Mbytes	External Static Memory chip select 2
External Static Memory	0x0300 0000	16 Mbytes	External Static Memory chip select 3
(ROMSWAP = 0)	0x0400 0000		Reserved
	0x1000.0000	16 Mbytes	External Static Memory chip select 0
	0x1100 0000		Reserved
	0x0000.0000	16 Mbytes	External Static Memory chip select 0
	0x0100 0000	16 Mbytes	External Static Memory chip select 1
Internal Boot ROM /	0x0200 0000	16 Mbytes	External Static Memory chip select 2
External Static Memory	0x0300 0000	16 Mbytes	External Static Memory chip select 3
(ROMSWAP = 1)	0x0400 0000	-	Reserved
	0x1000.0000	2 Kbytes	Internal Boot ROM
	0x1000 0800		Reserved
	0x3000 0000	-	Reserved
Internal SRAM	0x3FFF.E000	8 Kbytes	Internal SRAM
	0x4000.0000	32 Mbytes	SDRAM chip select 0
	0x4200.0000	32 Mbytes	SDRAM chip select 1
External SDRAM	0x4400.0000	-	SDRAM mode register chip 0
	0x4600.0000		SDRAM mode register chip 1
	0x4800 0000		Reserved
Dariaharala	0x8000.0000		ASB, APB Peripherals
Peripherals	0x8006 3000		Reserved

Table 4-1 Top-level address map

When a ROMSWAP pin is set low, if a BOOTSEL pin is set high, the SMC(Nand Flash) can be used by connecting to EBI, and if a BOOTSEL pin is set low, the MMC can be used by connecting to SSI 0.

When a ROMSWAP pin is set high, if a BOOTSEL pin is set high, support External 16-bit Memory, and if a BOORSEL pin is set low, support External 8-bit Memory booting,

The external Static Memory has an address space of 64Mbytes that is split equally between four external Static Memory chip select. Actual address range for each chip select is 16Mbytes with 24 external address signals.

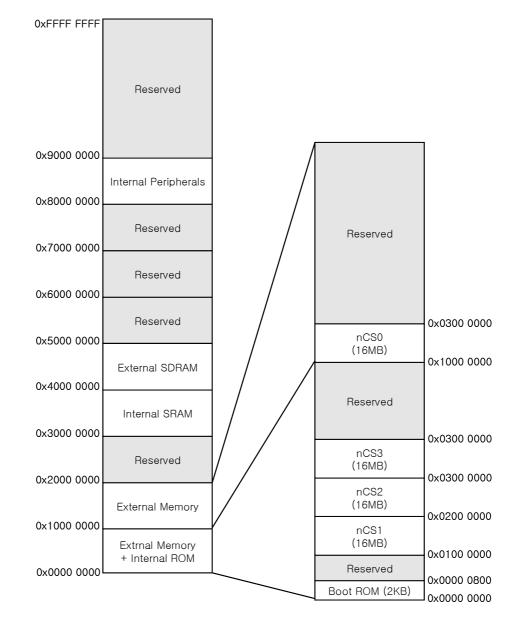


Figure 4-1. Internal Boot ROM / External Static Memory Map (ROMSWAP=0)

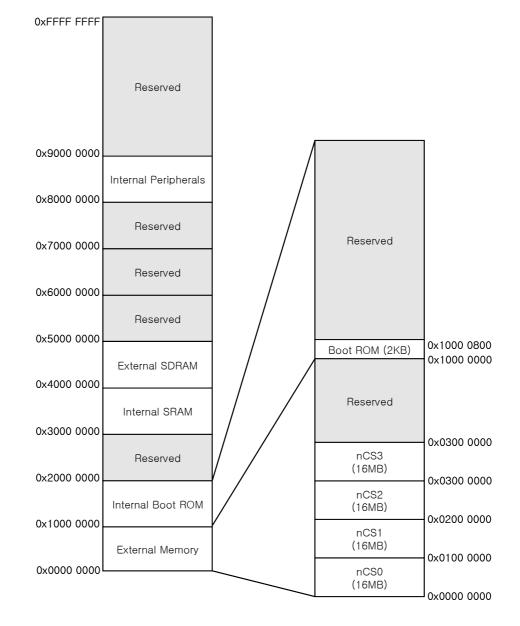


Figure 4-2. Internal Boot ROM / External Static Memory Map (ROMSWAP=1)

There is a maximum of 64Mbytes of SDRAM space. The mode registers (in the SDRAM) are programmed by reading from 64Mbyte address space immediately above the SDRAM (over 0x4400.0000).

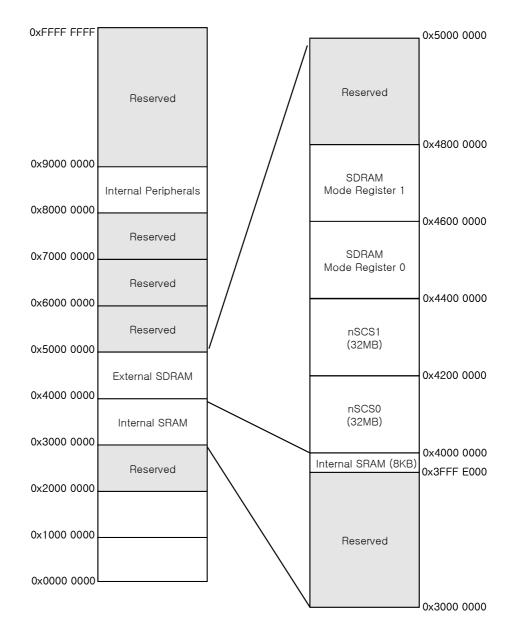


Figure 4-3. Internal SRAM / External SDRAM Memory Map

The peripheral address space is subdivided into two main areas: those on the ASB, the APB. The base address for the peripherals is given in Table 4-2: Peripherals base addresses.

Function	Base Address (Hex)	Name	Description	
	0x8000.0000	SDRAMC Base	SDRAM Controller	
	0x8001.0000	PMU Base	PMU	
ASB Peripherals	0x8002.0000	ExtFLASHC Base	External Bus Interface	
	0x8003.0000	Reserved		
	0x8004.0000	ARMTest Base	To ARM CPU	
	0x8005.0000	INTC Base	Interrupt Controller	
	0x8005.1000	USB Base	USB Controller	
	0x8005.2000	LCD Base	LCD Controller	
	0x8005.3000	ADC Base	ADC Interface	
	0x8005.4000	UART0 Base	UART0 (SCI0)	
	0x8005.5000	UART1 Base	UART1 (SCI1)	
	0x8005.6000	UART2 Base	UART2	
	0x8005.7000	UART3 Base	UART3	
	0x8005.8000	UART4 Base	UART4 (SIR)	
APB Peripherals	0x8005.9000	UART5 Base	UART5 (Modem)	
	0x8005.A000	SSI0 Base	SSI 0	
	0x8005.B000	SSI1 Base	SSI 1	
	0x8005.C000	SMC Base	SMC	
	0x8005.D000	TIM Base	Timerx4 / PWMx2	
	0x8005.E000	WDT Base	WDT	
	0x8005.F000	RTC Base	RTC	
	0x8006.0000	2WSBI Base	2WSBI	
	0x8006.1000	KBD Base	Matrix Keyboard	
	0x8006.2000	GPIO Base	GPIO	

Table 4-2 Peripherals Base Addresses

0xFFFF FFFF				
			Reserved	0x8FFF FFFF
	Reserved			0x8006 3000
			GPIO	0x8006 2000
			KEYBOARD	0x8006 1000
0x9000 0000			2-Wire SBI	0x8006 0000
	Internal Peripherals		RTC	0x8005 F000
0x8000 0000			WDT	0x8005 E000
	Reserved	\backslash	TIMER / PWM	0x8005 D000
0x7000 0000			SMC	0x8005 C000
	Reserved		SSI 1	0x8005 B000
0x6000 0000	Hoborvod		SSI 0	0x8005 A000
			UART 5	0x8005 9000
0.5000.0000	Reserved		UART 4	0x8005 8000
0x5000 0000			UART 3	0x8005 7000
	External SDRAM		UART 2	0x8005 6000
0x4000 0000			SCI 1 / UART 1	0x8005 5000
	Internal SRAM		SCI 0 / UART 0	0x8005 4000
0x3000 0000			ADC	0x8005 3000
	Reserved		LCD	0x8005 2000
0x2000 0000	Hoborvod		USB	0x8005 1000
			INTC	0x8005 0000
0x1000 0000			ARM TEST	0x8004 0000
			Reserved	0x8003 0000
			EBI	0x8002 0000
0x0000 0000		· \	PMU	0x8001 0000
		١	SDRAMC	0x8000 0000

Figure 4-4. Peripherals Address Map

5 Internal Boot ROM

HMS30C7210 has Internal boot ROM. Boot ROM's role load user's image code from external EBI NAND Flash / MMC connected SSI to Internal SRAM (8kbytes) and jumps to user's image code at Internal SRAM.

Like previous explanation, HMS30C7210 has two internal booting modes [NAND / MMC]. Each mode setting is decided as two external pin [ROMSWAP (99), BOOTSEL (100)] states.

Initially contents of copied image code from NAND / MMC to Internal SRAM are SDRAM initialization routine, copy routine from boot loader or executive binary image to SDRAM and jump to SDRAM starting address.

5.1 Hardware Setting

HMS30C7210 can boot internal Boot ROM [ROMSWAP=0] and external memory [ROMSWAP=1]. If it is set to internal Boot ROM, it can be NAND [BOOTSEL=1]/MMC [BOOTSEL=0] boot mode setting.

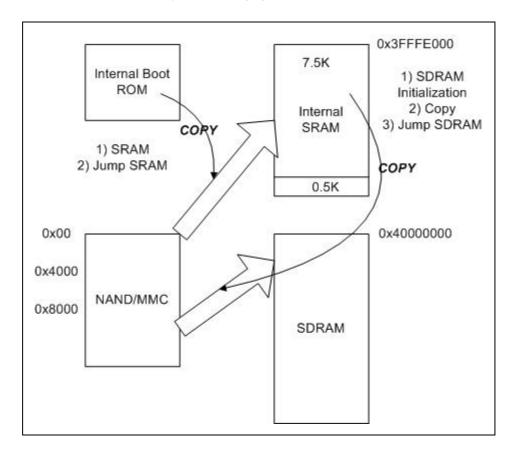

ROMSWAP	BOOTSEL	BOOT MODE
LOW (=0)	LOW (=0)	MMC
LOW (-0)	HIGH (=1)	NAND
HIGH (=1)	LOW (=0)	8 BIT
пюп (-1)	HIGH (=1)	16 BIT

Table 5-1. Pin Configuration

5.2 Software Setting

If it is decided on internal booting mode at H/W, you can program code to copy from NAND/MMC to Internal SRAM. Internal SRAM has 8Kbytes. So size of code, data and stack don't have over 8Kbytes. Presently code and data size is Max. 7.5Kbytes, stack size can use 0.5Kbytes. Following figure show S/W flows.

Figure 5-1. Software Boot Flows

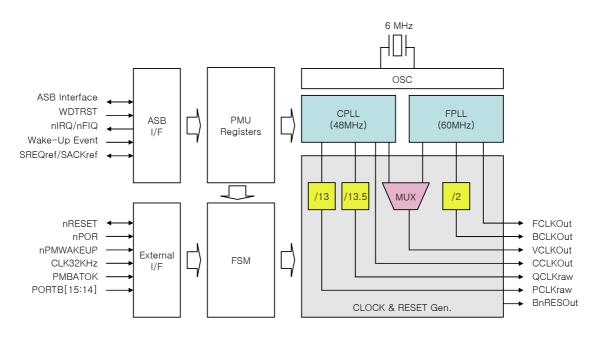
- After power on, internal boot ROM copies executive code (NAND/MMC address 0x00) from NAND/MMC to internal SRAM.
- Internal SRAM code from NAND/MMC has SDRAM controller initialization routine, copy other executive binary code from NAND/MMC to SDRAM and jump to SDRAM start address.

Used NAND/MMC map is following table.

Address	Discription
0x0000 0000 ~ 0x0000 3FFF	Boot 0 (no change) Iram2dram.axf
0x0000 4000 ~ 0x0000 7FFF	Boot 1 (no change) Iram2dram.axf
0x0000 8000 ~	Binary image (SDRAM no initialization)

Table 5-2. NAND / MMC Map

There are Boot0, Boot1 area in NAND/MMC. If Boot0 don't operate correctly, boot ROM uses Boot1 area in internal Boot Program. Also user's binary program don't initialize SDRAM init routine.



6 PMU & PLL

The HMS30C7210 is designed primarily for smart card reader and other portable computing applications. Therefore there are 4 operating modes to reduce power consumption and extend battery life.

- RUN normal operation (typically used for CPU-intensive tasks).
- SLOW half-speed operation used in the application demanding low computing power.
- IDLE where the CPU operation is halted but peripherals continue their operations (such as screen refresh, or serial communications).
- SLEEP & DEEP SLEEP This mode will be perceived as `off' by the user, but the SDRAM contents are preserved and only the real-time clock is running.

The transition between these modes is controlled by the PMU (see also Section 6.4 Power management). The PMU is an ASB slave unit to allow the CPU to access (read/write) its control registers, and is an ASB master unit to provide the mechanism for stopping the ARM core's internal clock.

6.1 External Signals

Pin Name Type		Description	
nPOR	IS	Power on reset input. Schmitt level input with pull-up	
nPMWAKEUP	IS	Wake-up "on-key" input.	
nRESET	I/O	Reset input	
PMBATOK	1	Main battery ok	
GPIOB[14]		To-deep-sleep input from GPIOB[14]	
GPIOB[15]	I	HotSync request from PORTB[15]	

Refer to Figure 2-1. 208 Pin diagram.

6.2 Registers

Address	Name	Width	Default	Description	
0x8001.0000	PMUMR	4	0x0	PMU Mode Register	
0x8001.0010	PMUIDR	32	0x0072100	PMU ID Register	
0x8001.0020	PMURSR	27	-	PMU Reset/Status Register	
0x8001.0028	PMUCCR	16	0x2F	PMU Clock Control Register	
0x8001.0030	PMUDCTR	18	-	PMU Debounce Counter Test Register	
0x8001.0038	PMUTR	8	0x0	PMU Test Register	

Table 6-1. PMU Register Summary

6.2.1 PMU Mode Register (PMUMR)

This read/write register is to change from RUN mode or SLOW mode into a different mode. The PMU mode encoding is shown below. The register can only be accessed in RUN mode or SLOW mode (these are the only modes in which the processor is active). Therefore, the processor will never be able to read values for modes other than mode 0x00 and mode 0x01. A test controller may read other values as long as clocks are enabled in every PMU mode by the bit 8 of the PMU Debounce Counter Test Register (PMUDCTR). For more information, please refer to 6.2.5.

0x800								
	31		3	2	1	0		
	Reserved	Reserved	WAKEUP CTRL	MODESEL[2:0]				

Bits	Туре	Function					
31:4	-	Reserved	Reserved				
3	R/W	Wake-up Control					
		0 = Prever	nt the PMU from exiting the DEEP SLEEP mode when the pin PMBATOK is inactive.				
		1 = Allow t	he PMU to exit the DEEP SLEEP mode even if the pin PMBATOK is inactive.				
2:0	R/W	MODE Se	lection				
		In reads, tl	he read value is the current PMU mode.				
		In writes, t	he write value is the target mode at which the PMU will arrive eventually.				
		Value	PMU mode encoding				
		0x04	Initialization mode				
		0x01	RUN mode				
		0x00	SLOW mode				
		0x02	IDLE mode				
		0x03	SLEEP mode				
		0x07	DEEP SLEEP mode				
		Note All	other values in the above table are undefined.				

6.2.2 PMU ID Register (PMUID)

This read-only register returns a unique chip revision ID. Revision 0 of the HMS30C7210 device (the first revision) will return the constant value 0x00721000.

0x800	10010	
	31	 0
	0x00721000	

6.2.3 PMU Reset/Status Register (PMURSR)

This read/write register provides information on power-on reset and the PLL status as well as wakeup and interrupt events. The PMURSR also provides software-initiated warm reset, and wakeup and interrupt masking The allocation is shown in the following two tables: PMURSR Bits. The event bits in this register are `sticky' bits. For a definition of a sticky bit, please refer to 5.2.3 Wake-up Debounce and Interrupt. Generally, this register will be read each time the ARM exits from reset mode, so that the ARM can identify what event has caused it to exit from reset mode.

0x80010020

	020							
3	81	30	29	28	27	26	25	24
F	Reserved	Reserved	Reserved	Reserved	Reserved	WARM RESET	HOTSYNC DBEN	WARM RST DBEN
2	23	22	21	20	19	18	17	16
	PFAIL DBEN	MRING DBEN	ONKEY DBEN	HOTSYNC WAKEN	WARM RST WAKEN	RTC WAKEN	MRING WAKEN	ONKEY WAKEN
1	15	14	13	12	11	10	9	8
	HOTSYNC NTREN	PFAIL INTREN	RTC INTREN	MRING INTREN	ONKEY INTREN	HOTSYNC EVT	WDT RST EVT	WARM RST EVT
7	7	6	5	4	3	2	1	0
	PFAIL EVT	RTC EVT	MRING EVT	ONKEY EVT	FPLL Un-LOCK	CPLL Un-LOCK	DEEP EVT	POR EVT

Bits	Туре	Function
31:27	-	Reserved
26	W	Software Warm Reset.
		Writing a `1' to this bit causes nRESET and the ASB system reset to be asserted.
		Writing a `0' to this bit has no effect.
25	R/W	Debounce Enable of Hot Sync Event.
		0 = Disable debouncing of hot sync event.
		1 = Enable debouncing of hot sync event (default).
24	R/W	Debounce Enable of Warm Reset Event.
		0 = Disable debouncing of warm reset event.
		1 = Enable debouncing of warm reset event (default).
23	R/W	Debounce Enable of Power Fail Event.
		0 = Disable debouncing of power fail event.
		1 = Enable debouncing of power fail event (default).
22	R/W	Debounce Enable of Modem Ring Indicator Event.
		0 = Disable debouncing of modem ring indicator event.
		1 = Enable debouncing of modem ring indicator event (default).
21	R/W	Debounce Enable of On Key Event.
		0 = Disable debouncing of on key event.
		1 = Enable debouncing of on key event (default).
20	R/W	Wake-up Enable of Hot Sync Event.
		0 = Disable CPU wake-up due to hot sync event (default).
		1 = Enable CPU wake-up due to hot sync event.
19	R/W	Wake-up Enable of External Warm Reset Event.
		0 = Disable CPU wake-up due to external warm reset event (default).
		1 = Enable CPU wake-up due to external warm reset event.
18	R/W	Wake-up Enable of RTC Alarm Event
		0 = Disable CPU wake-up due to RTC alarm event (default).
		1 = Enable CPU wake-up due to RTC alarm event.
17	R/W	Wake-up Enable of Modem Ring Indicator Event
		0 = Disable CPU wake-up due to modem ring indicator event (default).
		1 = Enable CPU wake-up due to modem ring indicator event.
16	R/W	Wake-up Enable of On Key Event.
		0 = Disable CPU wake-up due to on key event (default).
		1 = Enable CPU wake-up due to on key event.

15	R/W	Interrupt Mask of Hot Sync Event. 0 = Disable PMU interrupt due to hot sync event (default).
<u> </u>		1 = Enable PMU interrupt due to hot sync event.
14	R/W	Interrupt Mask of Power Fail Event.
		0 = Disable PMU interrupt due to power fail event (default).
- 10	DAM	1 = Enable PMU interrupt due to power fail event.
13	R/W	Interrupt Mask of RTC Alarm Event
		0 = Disable PMU interrupt due to RTC alarm event (default).
10	DAA	1 = Enable PMU interrupt due to RTC alarm event.
12	R/W	Interrupt Mask of Modem Ring Indicator Event
		0 = Disable PMU interrupt due to modern ring indicator event (default).
	DAA	1 = Enable PMU interrupt due to modem ring indicator event.
11	R/W	Interrupt Mask of On Key Event
		0 = Disable PMU interrupt due to on key event (default).
10	DAA	1 = Enable PMU interrupt due to on key event.
10	R/W	Hot Sync Event (IRQ from GPIOB[15])
		In reads,
		0 = No hot sync event has occurred since last cleared;
		1 = Hot sync event has occurred since last cleared.
		In writes, writing a `1' to this bit causes it to be cleared.
	DAA	When set, a PMU interrupt is generated if PMURSR[15] (HOTSYNC INTREN) is also set.
9	R/W	Watch Dog Timer Reset Event (a kind of warm reset)
		In reads,
		0 = No watch dog timer reset event has occurred since last cleared;
		1 = watch dog timer reset event has occurred since last cleared.
	B 844	In writes, writing a '1' to this bit causes it to be cleared.
8	R/W	Warm (External or Software) Reset Event
		In reads,
		0 = No warm reset event has occurred since last cleared;
		1 = Warm reset event has occurred since last cleared.
	DAM	In writes, writing a '1' to this bit causes it to be cleared.
7	R/W	Power Fail Event (Adaptor Not OK, Low PMBATOK)
		In reads,
		0 = No power fail event has occurred since last cleared;
		1 = Power fail event has occurred since last cleared.
		In writes, writing a `1' to this bit causes it to be cleared.
6		When set, a PMU interrupt is generated if PMURSR[14] (PFAIL INTREN) is also set.
6	R/W	RTC (Real Time Clock) Alarm Event
		In reads,
		0 = No RTC alarm event has occurred since last cleared;
		1 = RTC alarm event has occurred since last cleared.
		In writes, writing a `1' to this bit causes it to be cleared.
F		When set, a PMU interrupt is generated if PMURSR[13] (RTC INTREN) is also set.
5	R/W	Modem Ring Indicator Event (Low nMRING)
		In reads, 0 = No modem ring indicator event has occurred since last cleared:
		 0 = No modem ring indicator event has occurred since last cleared; 1 = Modem ring indicator event has occurred since last cleared.
		•
		In writes, writing a '1' to this bit causes it to be cleared.
4	R/W	When set, a PMU interrupt is generated if PMURSR[12] (MRING INTREN) is also set. On Key Event (Low nPMWAKEUP)
4	r/w	
		In reads,
		0 = No on key event has occurred since last cleared;
		1 = On key event has occurred since last cleared.
		In writes, writing a `1' to this bit causes it to be cleared.
2		When set, a PMU interrupt is generated if PMURSR[11] (ONKEY INTREN) is also set
3	R/W	FCLK PLL Un-Lock Event
		In reads,
		0 = FCLK PLL has been locked since last cleared;
		1 = FCLK PLL has fallen out of lock since last cleared.
2	DA4	In writes, writing a `1' to this bit causes it to be cleared.
2	R/W	CCLK PLL Un-Lock Event
		In reads,

		0 = CCLK PLL has been locked since last cleared;
		1 = CCLK PLL has fallen out of lock since last cleared.
		In writes, writing a `1' to this bit causes it to be cleared.
1	R/W	DEEP SLEEP Event
		In reads,
		0 = PMU has not entered the DEEP SLEEP mode since last cleared;
		1 = PMU has entered the DEEP SLEEP mode since last cleared.
		In writes, writing a `1' to this bit causes it to be cleared.
0	R/W	Power-on Reset Event
		In reads,
		0 = No power-on reset event has occurred since last cleared;
		1 = Power-on reset event has occurred since last cleared.
		In writes, writing a `1' to this bit causes it to be cleared.

6.2.4 PMU Clock Control Register (PMUCCR)

This register is used to control the two PLLs (FCLK and CCLK PLLs) and three main clocks (FCLK, CCLK and VCLK). The six bits of the PMUCCR are used to compose the input pins of the FCLK PLL for frequency selection and thus define the frequency of the FCLK. The default value (after power-on reset) for this register is 0x2F.

30010028 15	14	13	12	11	10	9	8
CCLK ENABLE	VCLK ENABLE	VCLK SEL	Reserved	Reserved	Reserved	Reserved	Reserved
7	6	5	4	3	2	1	0
FCLK MUT CTRL	E FFREQ UPDATE CTRL	FCLK PLL FRE	Q[5:0]				
Bits Ty	vpe Function						
31.16	Posorvod						

Bits	Туре	Function
31:16	-	Reserved
15	R/W	CCLK Enable
		0 = The CCLK is disabled.
		1 = The CCLK is enabled.
14	R/W	VCLK Enable
		0 = The VCLK is disabled.
		1 = The VCLK is enabled.
13	R/W	VCLK Select
		0 = The VCLK uses the clock source of the FCLK as its clock source.
		1 = The VCLK uses the clock source of the CCLK as its clock source.
12:8	R/W	Reserved
7	R/W	FCLK Mute Control
		0 = The FCLK is muted when the FCLK PLL is out of lock.
		1 = The FCLK is only muted during power-on reset. Subsequent unlock condition does not mute the FCLK. Allows
		dynamic changes to the clock frequency without halting execution. Care: this only will be legal if FCLK PLL is
		under-damped (i.e. will not exhibit overshoot in its lock behavior).
6	R/W	FCLK PLL Frequency Update Control
		0 = The written value to the bits[5:0] of the PMUCCR is transferred to a 6-bit temporary register, not the
		PMUCCR[5:0]. After that, if the CPU enters the DEEP SLEEP mode, the value in the temporary register is
		transferred to the bits[5:0] of the PMUCCR and thus the frequency control of the FCLK PLL is updated. And then,
		the FCLK PLL comes to life with the new frequency when the CPU exits the DEEP SLEEP mode.
		1 = The PMUCCR[5:0] and the frequency of the FCLK PLL is updated immediately after writing to the
5.0	D 44/	PMUCCR[5:0].
5:0	R/W	FCLK PLL Frequency Control
		Value Frequency
		Bit[5]= 0
		0x0C 21 MHz
		0x0D 22.5 MHz
		0x0E 24 MHz
		0x0F 25.5 MHz
		0x10 27 MHz
		0x11 28.5 MHz
		0x12 30 MHz
		0x13 31.5 MHz
		0x14 33 MHz
		0x15 34.5 MHz
		0x16 36 MHz
		0x17 37.5 MHz
		0x18 39 MHz
		0x19 40.5 MHz
		0x1A 42 MHz

0x1B 43.5 MHz 0x1C 45 MHz 0x1D 46.5 MHz 0x1E 48 MHz UNPREDICTABLE otherwise Value Frequency Bit[5] = 1 0x25 21 MHz 0x26 24 MHz 0x27 27 MHz 0x28 30 MHz 33 MHz 0x29 0x2A 36 MHz 39 MHz 0x2B 0x2C 42 MHz 0x2D 45 MHz 0x2E 48 MHz 0x2F 51 MHz (default) 0x30 54 MHz 0x31 57 MHz 60 MHz 0x32 0x33 63 MHz 0x34 66 MHz 0x35 69 MHz 0x36 72 MHz 75 MHz 0x37 0x38 78 MHz 0x39 81 MHz 84 MHz 0x3A 0x3B 87 MHz 0x3C 90 MHz 0x3D 93 MHz 0x3E 96 MHz

UNPREDICTABLE otherwise

IF BIT 6 (FCLK Frequency Update Control) is `0'

When the CPU core writes to bits[5:0] of this register, these bits are stored in a temporary buffer, which is not transferred to the input pins of the FCLK PLL until the next time the CPU enters the DEEP SLEEP mode. This means that for a new value to take effect, it is necessary for the device to enter the DEEP SLEEP mode first.

IF BIT 6 (FCLK Frequency Update Control) is `1'

The first effect that writing a new value to bits [5:0] will have is that the FCLK PLL will go out of lock, and the clock control circuit will immediately inhibit FCLK and BCLK, without first verifying that SDRAM operations have completed.

6.2.5 PMU Debounce Counter Test Register (PMUDCTR)

0030								
23		22	21	20	19	18	17	16
Reserved	b	Reserved	Reserved	Reserved	Reserved	Reserved	RST DB CTRL	CLK32K EXTSEL
15		14	13	12	11	10	9	8
DBGPIO	A	DBSEL[3:0]				CLK15	CLK31	CLK62
7		6	5	4	3	2	1	0
CLK125		CLK500	CLK1K	CLK2K	CLK4K	DBCNT[2:0]		U
Bits	Tuno	Function						
DIIS	Туре	Read			W	rite		
31:18	-	Reserved						
00			set Debounce Tir	ne Control				
		This is set	t to the same val	ue of the pin TDI	(input with a pull-u	ıp resistor) during	power-on reset.	
17	R					rt since the debou		s 16-KHz clock.
		1 = Debou	uncing time of wa	irm reset (or powe	er on reset) is long	g since the debou	nce counter uses	15.625-Hz clock
		(default).						
			CLK32K Select					
16	R/W			the 32-KHz input				
							the TIC test mod	e (nTEST = '0') to
				v	e debounce clock.			
15			ebounce Counter					TD in mod
15	R/W					counters as the bit 2:0] of the PMUD		IR In read.
			Counter Select				CTR III leau.	
		Debouried						
		When DB	GPIOA (PMUDC	TR[15]) is reset				
		Value	Function					
		0x0	On key ever	nt				
		0x1		indicator event				
		0x2	Power fail e	vent				
		0x3	Warm reset	event				
		0x4	Hot sync ev	ent (GPIOB[15])				
		0x5		ep event (GPIOB[14])			
		UNPRED	ICTABLE otherwi	ise.				
		When DB	GPIOA (PMUDC	TR[15]) is set				
14:11	R/W	Value	Function					
		0x0	GPIOA[0]					
		0x1	GPIOA[1]					
		0x2	GPIOA[2]					
		0x3	GPIOA[3]					
		0x4	GPIOA[4]					
		0x5	GPIOA[5]					
		0x6	GPIOA[6]					
		0x7	GPIOA[7]					
		0x8	GPIOA[8]					
		0x9	GPIOA[9]					
		0xA	GPIOA[10]					
		0xB	GPIOA[11]					
		15.625-Hz						
10	D		dohounoing CL	K dorived from the	DTC alcoly			
10	R		0	K derived from the		Todeonsloon aver	nte and CDIOA	alues
10 9	R R		is used to debou			Todeepsleep ever	nts and GPIOA v	alues.

R 62.5-Hz CLK 62.5-Hz CLK derived from the RTC clock.			
R	125-Hz CLK		
R	125-Hz CLK derived from the RTC clock. 500-Hz CLK		
IX .	500-Hz CLK derived from the RTC clock. 1-KHz CLK		
R	1-KHz CLK derived from the RTC clock.		
R	2-KHz CLK 2-KHz CLK derived from the RTC clock.		
R 4-KHz CLK 4-KHz CLK derived from the RTC clock.			
R	Selected Debounce Counter Debounce counter selected by the bits[15:11] of the PMUDCTR.		
	R R R R R		

In order that the debounce counters (which would normally be clocked at 250 Hz or 15.625 Hz) may be independently exercised and observed, the counters may be triggered and observed using the above registers. This register is for the test purpose only and not required in normal use.

6.2.6 PMU Test Register (PMUTR)

This register is used to control the PMU operation in the TIC test mode. This register is for test purpose only and not required in normal use.

0x80010038

 10000							
7	6	5	4	3	2	1	0
CLK BYPASS	NPLLEN[1:0]		PQCLK BYPASS CTRL	CCLK BYPASS SELECT	BCLK BYPASS	CLK ENFORCE	PMUTEST

Bits	Туре	Function
31:8	-	Reserved
7	R	Clock Bypass Enable
		Read value is the same value of the input pin nPLLENABLE
		If this value is '1', the clocks (of the system, USB, LCD, etc.) are provided using external bypass clocks from
		the pins.
		Normal, this value is '0', and the clocks are made using PLL output clocks.
6:5	R	Intermediate PLL Enable.
		When the bit[7] and bit[6] (NPLLEN[1]) of this register are both zero, the PLLs (FPLL and CPLL) are enabled.
4	R/W	PCLK/QCLK Bypass Control
		0 = When nPLLENABLE is '1', the PCLK and QCLK are directly bypassed from pin pads.
		1 = When nPLLENABLE is '1', the PCLK and QCLK are provided by a frequency divider that uses
		the bypass clock of the CCLK as its source clock.
3	R/W	Bypass Clock Select for the CCLK
		0 = CCLK uses TBQFCLK, as bypass clocks used when the nPLLENABLE pin is reset.
		1 = CCLK uses TBCCLK, as bypass clocks used when the nPLLENABLE pin is reset, in the TIC test mode.
2	R/W	BCLK Bypass Enable
		0 = BCLK is derived from the FCLKQ (clock lagging behind the FCLK by 90 degrees).
		1 = BCLK is derived from the bypass clock TBBCLK in the TIC test mode.
1	R/W	Clock Enforce
		0 = The FCLK, BCLK, VCLK and CCLK are disabled in the DEEP SLEEP mode (normal).
		1 = The FCLK, BCLK, VCLK and CCLK are enabled regardless of the PMU states (even in the DEEP SLEEP
		mode) in the TIC test mode.
0	R/W	PMUTEST
		0 = The PMU has lower priority than the TIC controller in the ASB ownership arbitration.
		1 = The PMU has higher priority than the TIC controller in the ASB ownership arbitration in the TIC test mode
		(for the purpose of TIC-testing the PMU).

6.3 **PMU Functions**

Clock Generator

The Clock generator in the PMU is responsible for controlling the PLLs and masking clocks by AND-gating while the PLL outputs are unstable, and ensures that clocks are available during test modes and during RESET sequences.

FCLK (ARM Processor and SDRAM controller clock)

This clock is derived from the FCLK PLL (FPLL) whose frequency is programmable between 21 MHz and 96 MHz using the LSB 6 bits of the PMUCCR (PMU Clock Control Register). Its default frequency is 51 MHz.

There are two methods for updating frequency, depending upon the state of the bit 6 of the PMUCCR (see PMUCCR register on Section 5.3.4). If the bit 6 is set, then any data written to the bits [5:0] of the PMUCCR are immediately transferred to the pins of FPLL, thus causing the loop to unlock and to mute FCLK. This is only a safe mode of operation if FPLL frequency and mark-space ratio is guaranteed to be within limits immediately after lock time. If the bit 6 is not set, then the HMS30C7210 must enter DEEP SLEEP mode before the written bits [5:0] of the PMUCCR register are transferred to the FPLL.

To switch between the two frequencies when the bit 6 is not set:

- Software writes the new value into the PMUCCR register.
- Set a Real Time Clock (RTC) Alarm to wake up the HMS30C7210 in 2 seconds.
- Enter DEEP SLEEP mode by writing 0x7 to the bits [2:0] of the PMU Mode Register (PMUMR).
- The HMS30C7210 will resurrect with FPLL running at the new frequency by the preset RTC Alarm.

To switch between the two frequencies when the bit 6 is set and bit 7 is not set:

- Software writes the new value into the PMUCCR register.
- Changes to the clock frequency with program halting execution.
- After FPLL state is stable, program is executed. (So you don't need to check FPLL LOCK bit state)

To switch between the two frequencies when the bit 6 is set and bit 7 is set:

- Software writes the new value into the PMUCCR register.
- Changes to the clock frequency without program halting execution.

For final switch methode has unstable state(program is not stopped). If you want to check FPLL stable state, Write '1' bit in FPLL LOCK bit (it to be cleared) And read FPLL LOCK bit. If FPLL LOCK bit is '1', state is unstable. If FPLL LOCK bit is '0', state is stable.

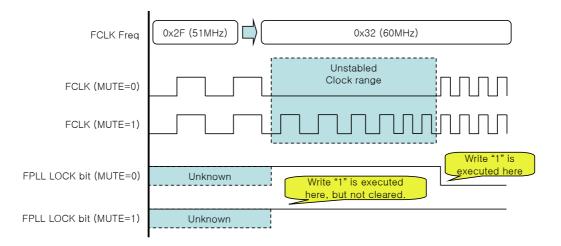


Figure 6-2. FCLK Frequency Update When the bit 6 is set

BCLK

This clock is ASB system bus clock generated by the PMU through dividing the FCLK frequency by 2 and 1/4 phase shift.

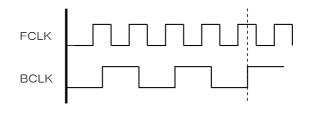


Figure 6-3. FCLK / BCLK relation

CCLK

The CCLK is generated by the CPLL and the frequency is fixed 48MHz. This clock is only used for the USB. The CCLK is disabled when BnRES (system reset) is active or when the PMU is put into DEEP SLEEP mode. On exit from either of these conditions, the CCLK must be re-enabled by software.

VCLK

The VCLK is selected between the FPLL and CPLL clock outputs using the bit 13 of the PMUCCR (the VCLK uses the FPLL output by default), and clocks the LCD controller. The VCLK is disabled when BnRES is active or when the PMU is put into DEEP SLEEP mode. On exit from either of these conditions, the VCLK must be reenabled by software.

Changing Clock (PLL) Selection:

- Software must first disable the VCLK, by writing `0' to the bit 14 of the PMUCCR register.
- Modify the bit 13 of the PMUCCR.
- Re-enable the VCLK by writing '1' to the bit 14 of the PMUCCR register.

PCLK

The PCLK is generated the CPLL divied by 13 (CPLL / 13 = 3.692308MHz). This clock is used for APB Block Function (UART, WDT, Timer etc).

QCLK

The QCLK is generated the CPLL divied by 13.5 (CPLL / 13.5 = 3.555556MHz). This clock is only used for the SmartCard Interface.

PMU state machine

The state machine handles the transition between the power management states described below. The CPU can write to the PMU mode registers (which is what would typically happens when a user switches off the device) and the state machine will proceed to the commanded state.

6.4 Power Management

6.4.1 State Diagram

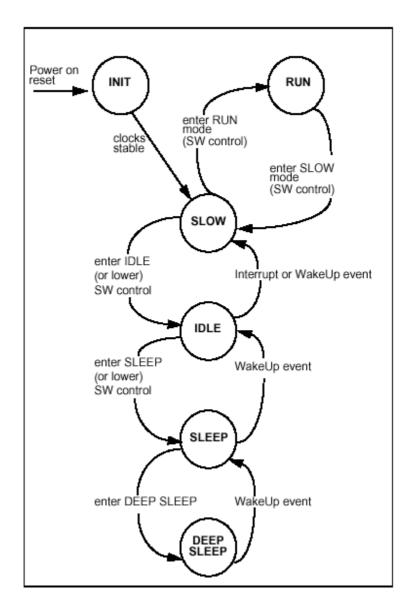


Figure 6-4. PMU Power Management State Diagram

6.4.2 Power management States

RUN

The system is running normally. All clocks are running (except where gated locally). The SDRAM controller is performing normal refresh.

SLOW

The CPU is switched into FastBus mode (please refer to the ARM720T DataSheet - DDI 0087), and hence runs at the BCLK rate (half the FCLK rate). This is the default mode after exiting DEEP SLEEP mode or system power on.

IDLE

In this mode, the PMU becomes the bus master until there is either a fast or normal interrupt for the CPU.

This will cause the clocks in the CPU to stop when it attempts an ASB access. The HMS30C7210 can enter this mode by writing 0x2 to the bits [2:0] of the PMUMR when in RUN or SLOW mode, or by WakeUp signal activation while in SLEEP or DEEP SLEEP mode.

NOTE: When the CPU sets IDLE mode into the PMU Mode Register, it must read non-chachable area for enter IDLE state.

SLEEP

In this mode, the SDRAM is put into self-refresh mode, and internal clocks are gated off. This mode can only be entered from IDLE mode (the PMU bus master must have the mastership of the ASB before this mode can be entered). The PMU must be the bus master to ensure that the system is stopped in a safe state, and is not half way through a SDRAM write (for example). Both the Video and Communication clocks (VCLK and CCLK) should be disabled before entering this state.

Usually the CPU would only drop in at this mode on the way to the DEEP SLEEP mode.

DEEP SLEEP

In the DEEP SLEEP mode, the crystal oscillator for the 6-MHz PLL input clock and the PLLs are disabled. This is the lowest power state available. Only the 32.768-KHz RTC oscillator runs and provides clocks for the RTC logic and the debouncing logic of the PMU. Everything else is powered down, and SDRAM is in self refresh mode. This is the normal system "off" mode.

The HMS30C7210 can get out of the SLEEP and DEEP SLEEP modes either by a user wake-up event (generally pressing the "On" key), by an RTC wake-up alarm, or by a modem ring indicate event. These wake-up sources go directly to the PMU.

6.4.3 Wake-up Debounce and Interrupt

The Wake-up events are debounced as follows:

Each of the event signals which are liable to noise (**nRESET, RTC, nPMWAKEUP,** and Modem Ring Indicator, Power Adapter Condition) is re-timed to a 15.625- or 250-Hz clock derived from the 32.768-KHz RTC clock. After being filtered to a quarter of the frequency of debouncing clock, each event has an associated `sticky' register bit. nPMWAKEUP (active low) is an external input, which may be typically connected to an "ON" key.

A `sticky' bit is a register bit that is set by the incoming event, but is only reset by the CPU. Thus should the FCLK PLL drop out of lock momentarily (for example) the CPU will be informed of the event, even if the PLL has regained lock by the time the CPU can read its associated register bit.

The **nPMWAKEUP**, Modem, Real Time Clock, HotSync and Power Adapter condition inputs are combined to form the PMU Interrupt. Each of these four interrupt sources (except Power Adapter condition) can wake up the CPU form the DEEP SLEEP mode, and then the CPU can be informed of each interrupt event. All of wakeup and interrupt sources may be individually enabled.

To make use of the nPMWAKEUP interrupt, (for example) controlling software will need to complete the following tasks:

- Enable the nPMWAKEUP interrupt, by writing '1' to bit 11 of the PMU Reset / Status Register (PMURSR).
- Once an interrupt has occurred, read the PMURSR register to identify the source(s) of interrupt. In the case of a nPMWAKEUP event, the register will return 0x10.
- Clear the appropriate `sticky' bit by writing a '1' to the appropriate bit location (in the nPMWAKEUP case, this will be the bit 4.).

PORTB[15] (HotSync) Wake-up Sequence

The PORTB[15] (HotSync) interrupt is OR-gated with nPMWAKEUP to support additional wake up sources.

PORTB[15] (HotSync) input signal can be used as a wake up source; it is also enabled an interrupt source using the Interrupt Enable Register of the Interrupt Controller. After wake up, software should program the GPIO PORTB interrupt mask bit of the Interrupt Enable Register and/or the HotSync interrupt mask bit of the PMURSR register.

One possible application is to use the **nDCD** signal, from the UART interface, as a wake up source, by connecting nDCD to a PORTB[15] input. In the DEEP SLEEP mode, nDCD can wake up the system by generating a PORTB[15] interrupt request to the PMU block. The PMU state machine then returns the system to the operational mode.

6.5 Reset Sequences

6.5.1 Power On Reset (Cold Reset))

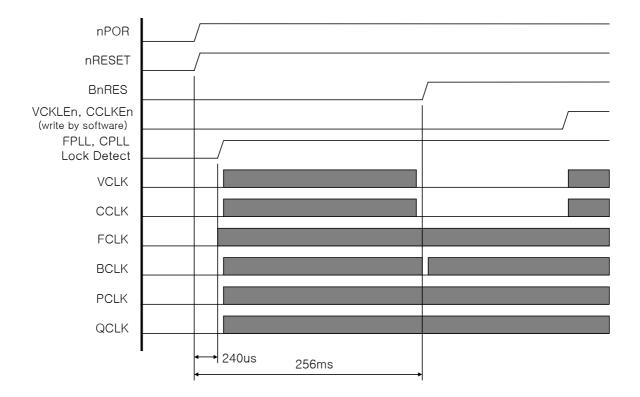


Figure 6-5. A Cold Reset Event

In the removal and re-application of all power to the HMS30C7210, the following sequence may be typical:

- nPOR input is active. All internal registers are reset to their default values. The PMU drives nRESETout LOW to reset any off-chip periperal devices.
- BnRES becomes active on exit from nPOR condition. Clocks are enabled temporarily to allow synchronus resets to operate.
- The default frequency of FCLK on exit from nPOR will be 51MHz.
- When FCLK is stable, the CPU clock is released. If the CPU were to read the Reset / Status register (PMURSR) at this time, It will return 0x03E0_000D.
- The CPU may write 0x03E0_000D to the PMURSR to clear these flag bits.

Bit	Meaning
bit 3 set:	FCLK PLL has been 'unlocked'
bit 2 set:	CCLK PLL has been 'unlocked'
bit 0 set:	Power On Reset event has occuerred

Table 6-2. Bit Settings for a Cold RESET Event within PMURSR register

The CPU writes 0x0032 to the Clock Control register (PMUCCR), which will set a FCLK speed of 60MHz. The new clock frequency, however, is not adopted until the PMU has entered and left DEEP SLEEP mode.

- The CPU sets a RTC timer alarm to expire in approximately 2 seconds. The CPU sets DEEP SLEEP into the PMU Mode Register
- The PMU state machine will enter DEEP SLEEP mode (via the intermediate states shown in Figure 6-4. PMU Power Management State Diagram.
- When the RTC timer alarm is activated, the PMU automatically wakes up into SLOW mode, but with the new FCLK frequency of 60MHz.
- The CPU may write 0xC032 to the Clock Control register, which enable CCLK and VCLK, and retains the new FCLK frequency.

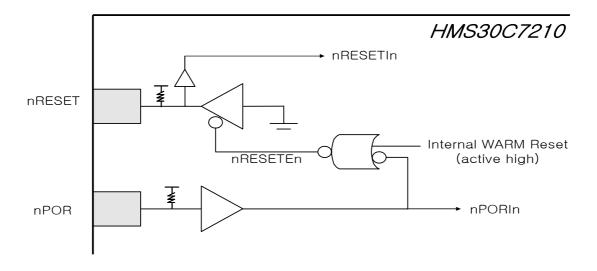
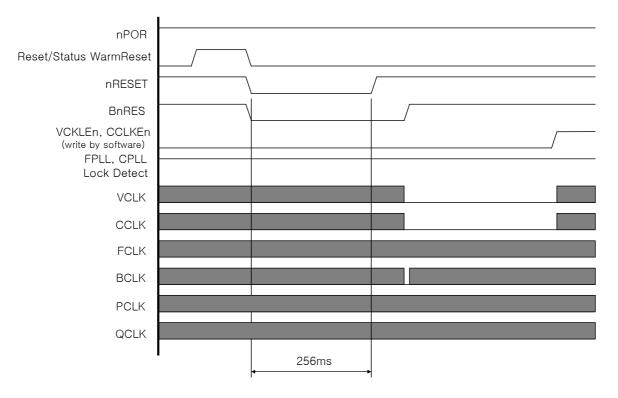
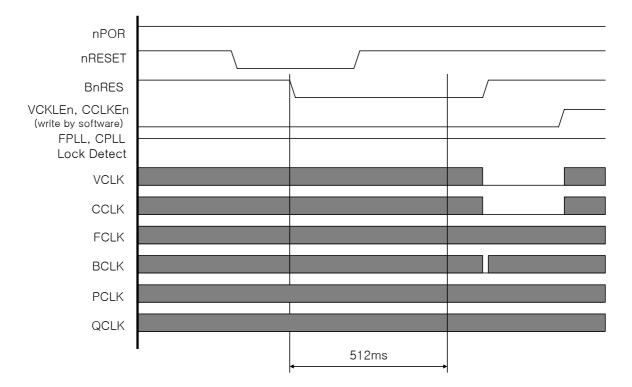


Figure 6-6. nPOR / nRESET / SoftwareReset Function

6.5.2 Software Generated Warm Reset




Figure 6-7. Software Generated Warm Reset

The CPU writes '1' to the WarmReset bit of RESET / Status register. The PMU drives **nRESET** low. The internal chip reset, BnRES is drive low. The PMU detects that the bidirectional nRESET pin is low. nRESET is filtered by a debounce circuit. Note that this means that nRESET will remain low for a mininum of 256ms (15.625Hz Pulse x 4). BnRES becomes active once the de-bounced nRESET goes high once more, whihc disables VCLK and CCLK. The CPU may read the RESET / Status register, which will return 0x03E0_010C.

bit 8 set: WARM Reset event has occurred.	
bit 3 set: FCLK PLL has been 'unlocked'	
bit 2 set: CCLK PLL has been 'unlocked'	

Table 6-3. Bit Settings for a Software generated Warm Reset within Reset / Status register

6.5.3 An Externally Generated Warm Rese

Figure 6-8. An Externally Generated Warm Reset

nRESET is driven to '0' by external hardware. The nRESET input is filtered by a de-bounce circuit. Note that this means that nRESET must remain low for a minimum of 512ms. BnRES (the on-chip reset signal) becomes active as soon as nRESET is low, and high once the de-bounced nRESET goes high once. BnRES disables VCLK and CCLK. The CPU may read the RESET / Status register, which will return 0x03E0_010C.

Bit	Meaning
bit 8 set:	WARM Reset event has occurred.
bit 3 set:	FCLK PLL has been 'unlocked'
bit 2 set:	CCLK PLL has been 'unlocked'

Table 6-4. Bit Settings for a Warm Reset within Reset / Status register

Note. The internal chip reset, BnRES remains active for 256ms after an externally generated nRESET. External devices should not assume that the HMS30C7210 is in an active state during this period.

7 SDRAM CONTROLLER

The SDRAM controller operates at the full CPU core frequency (FCLK) and is connected to the core via the ASB bus. Internally the SDRAM controller arbitrates between access requests from the main AMBA bus, and the LCD bus.

It can control up to two SDRAMs of 256Mbit (x16) density maximum. To reduce the system power consumption it can power down these individually using the Clock Enable (CKE). When the MCU is in standby mode the SDRAMs are powered down into self-refresh mode.

SDRAMs achieve the highest throughput when accessed sequentially – like LCD data. However accesses from the core are less regular. The SDRAM controller uses access predictability to maximize the memory interface bandwidth by having access to the LCD address buses. LCD accesses to the SDRAM occur in fixed-burst lengths of 16 words. ARM accesses occur in a fixed-burst length of four words. If the requested accesses are shorter than four words, then the extra data is ignored.

FEATURES

- 16 Bits wide external bus interface (two access requires for each word)
- Supports 16/64/128/256Mbit device
- Supports 2~64 Mbytes in up to two devices (the size of each memory device may be different)
- Programmable CAS latency
- Supports 2/4 banks with page lengths of 256 or 512 half words
- Programmable Auto Refresh Timer
- Support low power mode when IDLE (each device's CKE is disable individually).

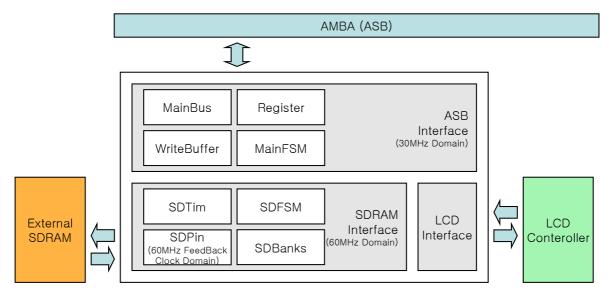


Figure 7-1. SDRAM Controller Block Diagram

7.1 Supported Memory Devices

2-64MBytes of SDRAM are supported with any combination of one or two 16/64/128/256Mbit devices. Each device is mapped to a 32MByte address space. The MMU (memory management unit) maps different device combinations (e.g. 16-and 64Mbit devices) into a continuous address space for the ARM core.

Total Memory	16Mbit devices	64Mbit devices	128Mbit devices	256Mbit devices
2Mbyte	1	-	-	-
4Mbyte	2	-	-	-
8Mbyte	-	1	-	-
16Mbyte	-	2	1	-
32Mbyte	-	-	2	1
64Mbyte	-	-	-	2

Note The HMS30C7210 can use any mixture of 16-, 64-, 128- or 256Mbit SDRAMs. It is the responsibility of software to determine the actual external memory configuration, and to program the memory management unit appropriately.

The SDRAM controller allows up to four memory banks to be open simultaneously. The open banks may exist in different physical SDRAM devices.

7.2 External Signals

Pin Name	Туре	Description	
RA [14:11]	0	SDRAM address bus	
SA10			
RA [9:0]			
RD [15:0]	I/O	SDRAM data bus	
SCLK	0	SDRAM clock output	
SCKE [1:0]	0	SDRAM clock enable outputs	
nRAS	0	SDRAM row address select output	
nCAS	0	SDRAM column address select output	
nSWE	0	SDRAM write enable output	
nSCS [1:0]	0	SDRAM chip select outputs	
DQML	0	SDRAM lower data byte enable	
DQMU	0	SDRAM upper data byte enable	

Refer to Figure 2-1. 208 Pin diagram.

7.3 Registers

The SDRAM controller has three registers: the configuration, refresh timer and the Write Buffer Flush timer. The configuration register's main function is to specify the number of SDRAMs connected, and whether they are 2- or 4-bank devices. The refresh timer gives the number of BCLK ticks that need to be counted in-between each refresh period. The Write Buffer Flush timer is used to set the number of BCLK ticks since the last write operation, before the write buffer's contents are transferred to SDRAM.

Address	Name	Width	Default	Description
0x8000.0000	SDCON	32	0x0070 0000	Configuration register
0x8000.0004	SDREF	16	0x0000 0080	Refresh timer
0x8000.0008	SDWBF	3	0x0000 0000	Write back buffer flush timer

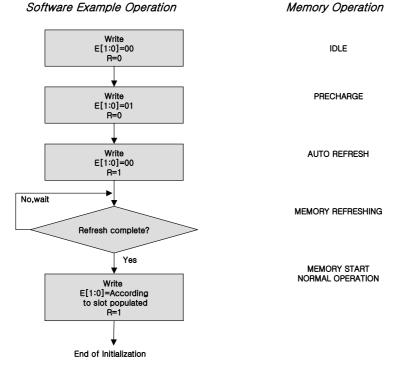
Table 7-1 SDRAM Controller Register Summary

In addition to the SDRAM control registers, the ARM may access the SDRAM mode registers by writing to a 64MByte address space referenced from the SDRAM mode register base address. Writing to the SDRAM mode registers is discussed further..

0x8000.0000

7.3.1 SDRAM Controller Configuration Register (SDCON)

.0000											
31	30	29	28	27	26	25	24				
S1	S0	-	-	-	-	-	-				
23	22	21	20	19	18	17	16				
R	A	C1	CO	D	C	В					
		-	12	11	10		-				
15	14	13	9	8							
-	-	-	-	-	-	-	-				
7	6	5	4	3	2	1	0				
E1	B1	E0 B0									
Bits	Туре	Function									
31:30	R	31									
23	R/W	Normal SDRAM controller refresh enable 1 = the SDRAM controller provides refresh control 0 = the SDRAM controller does not provide refresh									
22	R/W	Auto pre-charge on ASB accesses 1 = auto pre-charge (default) 0 = no auto pre-charge									
21:20	R/W	W CAS Latency Control C[1:0] = 11, CAS latency 3 C[1:0] = 10, CAS latency 2 C[1:0] = 01, CAS latency 1 C[1:0] = 00, Reserved									
19	R/W	SDRAM bus tri-state control 0 = the controller drives the last data onto the SDRAM data bus (default) 1 = the SDRAM bus is tri-stated except during writes This bit should be cleared before the IC enters a low power mode. Driving the data lines avoids floating input that could increase device power consumption. During normal operation the D bit should be set, to avoid dat bus drive conflicts with SDRAM.									
18	R/W	SDRAM clock enable control 0 = the clock of IDLE devices are disabled to save power (default) 1 = all clock enables are driven HIGH continuously									
17	R/W	Write buffer enable Value = 1 if the write buffer is enabled Value = 0 if the write buffer is disabled									
7	R/W	Device enable – ind This bit is used to de device. 1 = a device is prese 0 = a device is not p	etermine whether ent at address ran	an auto-refresh c ge 32-64Mbyte (\$	ommand should SLOT 1)						
6	R/W	Indicates whether the SDRAM in the SLOT is a 2- or 4-bank device 1 = the SDRAM is a four-bank device 0 = the SDRAM is a two-bank device									
3	R/W	Device enable – indicates that there is a physical SDRAM present in each of the two slots in the address map. This bit is used to determine whether an auto-refresh command should be issued to a particular memory device. 1 = a device is present at address range 0-32MByte (SLOT 0) 0 = a device is not present at address range 0-32Mbyte									
2	R/W	Indicates whether th 1 = the SDRAM is a 0 = the SDRAM is a	e SDRAM in the s four-bank device								


The SDRAM controller configuration register is a 32-bit wide split read/write register, such that bits [23:0] should be configured by the ARM, and bits [31:24] provide status information that read-only. All locations containing "-"are for future expansion, and should always be programmed with the binary value 0. Writes to bits [31:24] are always ignored. During power-up initialization, it is important that the E[1:0] and the R bits are set in the correct sequence.

The SDRAM controller powers-up with E[1:0]=00 and R=0.

This indicates that the memory interface is IDLE. Next, the software should set at least one E bit to 1 with the R bit 0. This will cause both devices to be precharged (if present).

The next operation in the initialization sequence is to auto-refresh the SDRAMs. Note that the number of refresh operations required is device-dependent. Set R=1 and E[1:0]=00 to start the auto-refresh process. Software will have to ensure that the prescribed number of refresh cycles is completed before moving on to the next step.

The final step in the sequence is to set R=1 and to set the E bits corresponding to the populated slots. This will put the SDRAM controller (and the SDRAMs) in their normal operational mode.

Software Example Operation

Figure 7-2. SDRAM Controller Software Example and Memory Operation Diagram

7.3.2 SDRAM Controller Refresh Timer Register (SDREF)

0x8000.0004

-		15 – 0						
Reserve	ed	SDREF						
Bits	Туре	Function						
15:0	R/W	A 16-bit read/write register that is programmed with the number of BCLK ticks that should be counted between SDRAM refresh cycles. For example, for the common refresh period of 16us (16x10E-6), and a BCLK frequency of 30MHz (30x10E6), the following value should be programmed into it: (16x10E-6) x (30x10E6) = 480						
		The refresh timer defaults to a value of 128, which for a 16us refresh period assumes a worst case (i.e. slowest) clock rate of:						
		128 / (16x10E-6) = 8 MHz						
		The refresh register should be programmed as early as possible in the system start-up procedure, and first few cycles if the system clock is less than 8MHz.						

7.3.3 SDRAM Controller Write buffer flush timer Register (SDWBF)

0x8000.0008

-				2 – 0
Reserve	d			SDWBF
Bits	Туре	Function		
2:0	R/W	A 3-bit read/write are given in the f	register that sets the time-out value for flushing the ollowing table.	quad word merging write buffer. The time
		Timer value	BCLK ticks between time-outs	
		111	128	
		110	64	
		101	32	
		100	16	
		011	8	
		010	4	
		001	2	
		000	Time-out disabled	

7.4 Power-up Initialization of the SDRAMs

The SDRAMs are initialized by applying power, waiting a prescribed amount of settling time (typically 100us), performing at least 2 auto-refresh cycles and then writing to the SDRAM mode register. The exact sequence is SDRAM device-dependent.

The settling time is referenced from when the SDRAM CLK starts. The processor should wait for the settling time before enabling the SDRAM controller refreshes, by setting the R bit in the SDRAM control register. The SDRAM controller automatically provides an auto refresh cycle for every refresh period programmed into the Refresh Timer when the R bit is set. The processor must wait for sufficient time to allow the manufacturer's specified number of auto-refresh cycles before writing to the SDRAM's mode register.

The SDRAM's mode register is written to via its address pins (A[14:0]). Hence, when the processor wishes to write to the mode register, it should read from the binary address (AMBA address bits [24:9]), which gives the binary pattern on A[14:0] which is to be written. The mode register of each of the SDRAMs may be written to by reading from a 64Mbyte address space from the SDRAM mode register base address. The correspondence between the AMBA address bits and the SDRAM address lines (A[14:0]) is given in the Row address mapping of Table 7-2 SDRAM Row/Column Address Map. Bits [25] of the AMBA address bus select the device to be initialized.

The SDRAM must be initialized to have the same CAS latency as is programmed into C[1:0] bits of the SDRAM control register, and always to have a burst length of 8.

7.5 SDRAM Memory Map

The SDRAM controller can interface with up to two SDRAMs. Four SDRAM sizes are supported -- 16, 64, 128 and 256Mbits -- which may be organized in either two or four banks but which must have a 16-bit data bus. A maximum of 64Mbytes of memory may be addressed by the SDRAM controller, which subdivided into two 32Mbyte blocks, one for each of the external SDRAMs.

The mapping of the AMBA address bus to the SDRAM row and column addresses is given in Table 7-2 SDRAM Row/Column Address Map. The first row of the diagram indicates the SDRAM address bit (A[14:0]); the remaining numbers indicate the AMBA address bits BA[24:1]. Note that for 16Mbit device, pins A[11,9] on thee SDRAM should be connected to pins RA[13,12] on the HMS30C7210, and the pins RA[11,9] should not be connected.

SDRAM ADDR	14	13 (BS0)	12 (BS1)	11	10	9	8	7	6	5	4	3	2	1	0
Row 16Mbit	24	10*	9*	Note 1	20*	Note 1	19*	18*	17*	16*	15*	14*	13*	12*	11*
Col 16Mbit	24	10	10	Note 1	20	Note 1	23	8*	7*	6*	5*	4*	3*	2*	Note 2
Row 64Mbit	24	10*	9*	22*	20*	21*	19*	18*	17*	16*	15*	14*	13*	12*	11*
Col 64Mbit	24	10	10	22	20	21	23	8*	7*	6*	5*	4*	3*	2*	Note 2
Row 128Mbit	24	10*	9*	22*	20*	21*	19*	18*	18*	16*	15*	14*	13*	12*	11*
Col 128Mbit	24	10	10	22	20	21	23*	8*	7*	6*	5*	4*	3*	2*	Note 2
Row 256Mbit	24*	10*	9*	22*	20*	21*	19*	18*	18*	16*	15*	14*	13*	12*	11*
Col 256Mbit	24	10	10	22	20	21	23*	8*	7*	6*	5*	4*	3*	2*	Note 2
Mode Write	24*	10*	9*	22*	20*	21*	19*	18*	17*	16*	15*	14*	13*	12*	11*
Summar y	24	10	9	22	20	21	19/23	18/8	17/7	16/6	15/5	14/4	13/3	12/2	11*

Table 7-2 SDRAM Row/Column Address Map

Notes (1) For the 16Mbit device, SDRAM address line A11 should be connected to the HMS30C7210 pin RA[13](BS0), and the SDRAM address line A9 should be connected to the HMS30C7210 pin RA[12](BS1). The HMS30C7210 address lines RA[11] and RA[9] should not be connected. (2) Since all burst accesses commence on a word boundary, and SDRAM addresses are non-incrementing (the address incremented is internal to the device), column address zero will always be driven to logic '0'.

* An asterisk denotes the address lines that are used by the SDRAM.

The start address of each SDRAM is fixed to a 32Mbyte boundary. The memory management unit will be used to map the actual banks that exist into contiguous memory as seen by the ARM. Bits [25] of the AMBA address bus select the device to be initialized, as described in Table 7-3.

BA25	Device selected
0	Device 0
1	Device 1

Table 7-3 SDRAM Device Selection

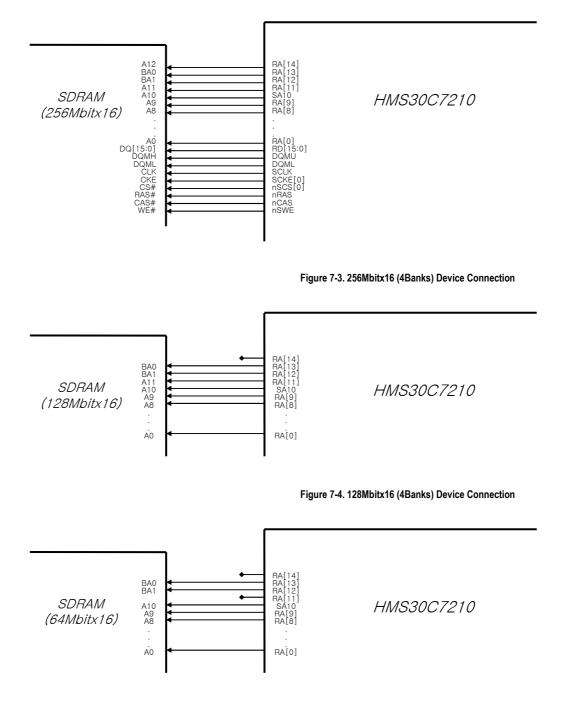


Figure 7-5. 64Mbitx16 (4Banks) Device Connection

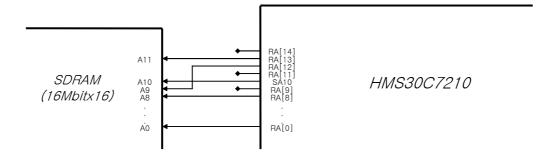


Figure 7-6. 16Mbitx16 (2Banks) Device Connection

7.6 AMBA Accesses and Arbitration

The SDRAM controller bridges both the AMBA Main and Video buses. On the Main bus, the SDRAM appears as a normal slave device. On the LCD DMA bus, the SDRAM controller integrates the functions of the bus arbiter and address decoder. Writes from the main bus may be merged in the quad word merging write buffer. A Main/LCD arbiter according to the following sequence arbitrates access requests from either the Main or LCD buses:

- Highest Priority: LCD
- Middle Priority: Refresh request
- Lowest Priority: Main bus peripheral (PMU, ARM)--order determined by Main bus arbiter.

LCD SDRAM accesses always occur in bursts of 16 words. Once a burst has started, the SDRAM controller provides data without wait states. LCD data is only read from SDRAM, no write path is supported.

If a refresh cycle is requested, then it will have lower priority than the Video bus, but will be higher than any other accesses from the Main bus. Assuming a worst-case BCLK frequency of 8MHz, the maximum, worst-case latency that the arbitration scheme enforces is 11.5us before a refresh cycle can take place. This is comfortably within the 16us limit. Note that the 2 external SDRAM devices are refreshed on 2 consecutive clock cycles to reduce the peak current demand on the power source.

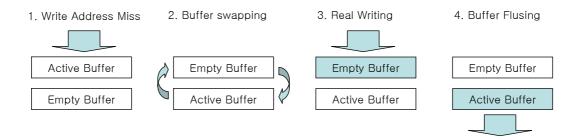
The arbitration of the Main bus is left to the Main bus arbiter. Data transfers requested from the Main bus always occur as a burst of eight half-word accesses to SDRAM. The Main bus arbiter cannot break into access requests from the Main bus. In the case where fewer than four words are actually requested by the Main bus peripheral, the excess data from the SDRAM is ignored by the SDRAM controller in the case of read operations, or masked in the case of writes.

In the case where more than four words are actually requested by the Main bus peripheral, the SDRAM controller asserts BLAST to force the ASB decoder to break the burst.

In the case of word/half-word/byte misalignment to a quad word boundary (when any of address bits [3:0] are non-zero at the start of the transfer), BLAST is asserted at the next quad word boundary to force the ASB decoder to break the burst. Sequential half word (or byte) reads are supported and the controller asserting BLAST at quad word boundary. In the case of byte or half word reads, data is replicated across the whole of the ASB data bus.

Data bus for word access:

31				23
15		7	0	
d31 d30 d29 d28 d27 d26 d25	5 d24 d23 d22 d21 d20 d19 d1	8 d17 d16 d15 d14 d13 d12 d11	d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0	
Data bus for half word acce	ss:			
31		23		15
7	0			
d15 d14 d13 d12 d11 d10 d9	d8 d7 d6 d5 d4 d3 d2 d1 d0 d1	15 d14 d13 d12 d11 d10 d9 d8 d	7 d6 d5 d4 d3 d2 d1 d0	
Data bus for byte access:				
31		23		15
7	0			
d7 d6 d5 d4 d3 d2 d1 d0 d7 d	6 d5 d4 d3 d2 d1 d0 d7 d6 d5	d4 d3 d2 d1 d0 d7 d6 d5 d4 d3	d2 d1 d0	



7.7 Merging Write Buffer

An eight word merging Write-Buffer is implemented in the SDRAM controller to improve write performance. The write buffer can be disabled, but its operation is completely transparent to the programmer. The eight words of the buffer are split into two quad words, the same size as all data transactions to the SDRAMs. The split into two quad words allows one quad word to be written to at the same time as the contents of the other are being transferred to SDRAM. The quad word buffer currently being written to may be accessed with non-contiguous word, half word or byte writes, which will be merged into a single quad word. The buffered quad word will be transferred to the SDRAM when:

- There is a write to an SDRAM address outside the current quad word being merged into
- There is a read to the address of the quad word being merged into
- There is a time-out on the write back timer

The two quad-words that make up the write buffer operate in "ping-pong" fashion, whereby one is initially designated the buffer for writes to go into, and the other is the buffer for write backs. When one of the three events that can cause a write-back occurs, the functions of the two buffers are swapped. Thus the buffer containing data to be written back becomes the buffer that is currently writing back, and the buffer that was the write-back buffer becomes the buffer being written to.

In the case of a write-back initiated by a read from the same address as the data in the merge buffer, the quad word in the buffer is written to SDRAM, and then the read occurs from SDRAM. The write before read is essential, because not all of the quad word in the buffer may have been updated, so its contents need to be merged with the SDRAM contents to fill any gaps where the buffer was not updated.

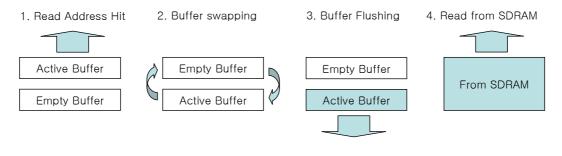


Figure 7-8. Read Hit Flusing

The write buffer flush timer forces a write back to occur after a programmable amount of time. Every time a write into the buffer occurs, the counter is re-loaded with the programmed time-out value, and starts to counts down. If a time-out occurs, then data in the write buffer is written to SDRAM.

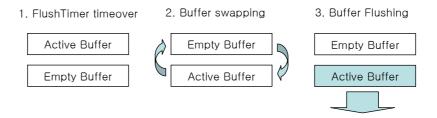


Figure 7-9. Timer timeover Flusing

8 STATIC MEMORY INTERFACE

The Static Memory Controller interfaces the AMBA Advanced System Bus (ASB) to External Memory Systems e.g, SRAM, FLASH, ROM. It can be programmed to use EBI(External Bus Interface) or not. It provides four separate memory or expansion banks. Each bank is 16MB in size and can be programmed individually to support:

FEATURES

- Unified External Bus Interface with SDRAM Address and Data pins
- 8- or 16-bit wide, little-endian memory
- Alignment Error Checking
- Burst read access support
- Variable wait states (up to 15 for READ, up to 16 for Write) :: Unable to Write with Zero wait state
- SMC (Nand Flash Memory) access support (See SMC controller, section 9.8.3 SMC access using EBI interface)

In addition, Burst mode access allows fast sequential read access by the System Bus Commands. This can significantly improve bus bandwidth in reading from memory (that must support at least four word burst reads).

8.1 External Signals

nRWE[1:0]	0	
	0	These signals are active LOW write enables for each of the memory byte lanes on the external
		bus.
nROE	0	Active LOW Output enable
nRCS[3:0]	0	Active LOW chip selects.
RA [23:0]	0	Address Bus
RD [15:0]	I/O	Data Bus

Refer to Figure 2-1. 208 Pin diagram.

8.2 Registers

Address	Name	Width	Default	Description
0x8002.0004	BANK0_REG	13	0x0041	Memory Configuration Register 0
0x8002.0008	BANK1_REG	13	0x0041	Memory Configuration Register 1
0x8002.000C	BANK2_REG	13	0x0041	Memory Configuration Register 2
0x8002.0010	BANK3_REG	13	0x0041	Memory Configuration Register 3

Table 8-1 Static Memory Controller Register Summary

8.2.1 MEM Configuration Register

		12 11 10 9 8 7 6 5 4 3 2 1 0
		BT BUR BURST READ NORMAL ACCESS WAIT - MEM WIDTH Dne EN WAIT STATE STATE - MEM WIDTH
Bits	Туре	Function
31:13		Reserved
12	R/W	Boot Done This controller can have the boot bits which defines the Memory Size for the Booting. And in the Boot Mood, All external Memory Bank Memory Size is determined only by the boot bits signal. So, when the booting is done, attached external memory size should be properly set by the host software. *** MEM WIDTH field can only be set when this bit is logic 1. So, after booting is done, the host software should set this bit to logic 1 for properly setting the attached memory size.
11	R/W	Burst Enable Setting this bit enables burst reads to take advantage of faster access times from memory devices that support burst mode.
10:7	R/W	BURST Read Wait State Value Number of Burst Read Wait State :: same as the bit number 0000 0 0001 1 1111 15 default wait is not set
6:3	R/W	NORMAL Access Wait State Value Number of Normal Access Wait State 0000 0(read mode), 1(write mode) 0001 1(read mode), 2(write mode) 0001 1(read mode), 16(write mode) 1111 15(read mode), 16(write mode) default is 1000 (8, read mode :: 9, write mode) :: In case of read operation, the asserted wait numbers are equal to the value of this field. But, in write operation, the asserted wait numbers are equal to the value of this field. But, in write operation, the asserted wait number should add 1 to this field value. So, write operation to external memory can't be done in zero wait
2	-	
1:0	R/W	Memory Width 00 :: 8bit-wide Memory 01 :: 16bit-wide Memory 10 :: Reserved 11 :: Reserved for future Use

8.3 Functional Description

The Static Memory Controller (SMI) has six main functions:

- Memory bank select
- Access sequencing
- Wait states generation
- Burst read control
- Byte lane write control these are described below

8.3.1 Memory bank select

Internally, The Static Memory Controller can support up to four External Memory Bank and for this purpose, it's equipped with four bank controller registers. But externally, only one chip Select pin is assigned. So, only Bank0 Can be used for External Memory Access.

Case I. ROMSWAP is '1' address mapping (Means that external booting)

Start Address	Address (Hex)	Size	Description	
(256M +0M)Byte	0x0000.0000	16Mbytes	ROM chip select 0	
(256M+ 16M)Byte	0x0100.0000	16Mbytes	ROM chip select 1	
(256M + 32M)Byte	0x0200.0000	16Mbytes	ROM chip select 2	
(256M + 64M)Byte	0x0300.0000	16Mbytes	ROM chip select 3	

Case II. ROMSWAP is '0' address mapping (Means that internal booting)

Address (Hex)	Size	Description	
0x1000.0000	16Mbytes	ROM chip select 0	
0x0100.0000	16Mbytes	ROM chip select 1	
0x0200.0000	16Mbytes	ROM chip select 2	
0x0300.0000	16Mbytes	ROM chip select 3	
	0x1000.0000 0x0100.0000 0x0200.0000	0x1000.0000 16Mbytes 0x0100.0000 16Mbytes 0x0200.0000 16Mbytes	0x1000.0000 16Mbytes ROM chip select 0 0x0100.0000 16Mbytes ROM chip select 1 0x0200.0000 16Mbytes ROM chip select 2

Refer to Figure 4-1, Figure 4-2.

8.3.2 Access sequencing

Bank configuration also determines the width of the external memory devices. When the external memory bus is narrower than the transfer initiated from the current master, the internal transfer will take several external bus transfers to complete. And in addition, the access to External memory should always meet the Alignment Condition. When there is an access which does not meet the Alignment, this controller generates bus error condition which may be used for abort condition.

8.3.3 Wait states generation

The Static Memory Controller supports various wait states for read and write accesses. This is configurable between zero and 15 wait states for standard memory access (write operation to external memory can't be done in 0 wait).

8.3.4 Burst read control

This supports sequential access burst reads in 8- or 16-bit memories according to the ABMA Bus signal.

8.3.5 Byte lane write control

This controls nRWE[1:0] according to transfer width, BA[1:0] and the access sequencing. The table below shows nRWE[1:0] coding case by little endian accessing to 16, 8-bit external memory bus.

CASE 1	ACCESS :	Write	16-bit	external	bus
UNCL I.	ACCLOC .	•••••••••••••••••••••••••••••••••••••••	10-01	CALCITIAI	bus

BSIZE [1:0]	BA [1:0]	IA [1:0]*note1	nRWE [1:0]	
10 (WORD)	XX	1X	00	
	XX	0X	00	
01 (HALF)	1X	1X	00	
	0X	0X	00	
00 (BYTE)	11	1X	01	
	10	1X	10	
	01	0X	01	
	00	0X	10	

CASE 1. ACCESS : Write, 8-bit external bus

BSIZE [1:0]	BA [1:0]	IA [1:0]*note1	nRWE [1:0]	
10 (WORD)	XX	11	10	
	XX	10	10	
	XX	01	10	
	XX	00	10	
01 (HALF)	1X	11	10	
	1X	10	10	
	0X	01	10	
	0X	00	10	
00 (BYTE)	11	11	10	
	10	10	10	
	01	01	10	
	00	00	10	

Note1 : IA[1:0] (internal SMI Address)

The Write Operation can be attempted with 8 or 16Bit Wide regardless of the attached External Memory Size. The translation is done internally in this controller. Internally, this controller support 2bit wide Write Enable strobe, each for individual Byte. But there exist only one external Write Enable Strobe(nRWE[1:0]).

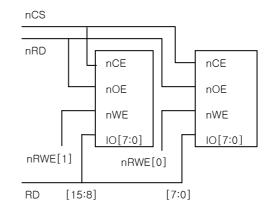

Byte size	Even Address Odd Address	Upper Byte	Lower Byte
 Half word size		Upper Byte	Lower Byte
 Word size	1 st bus cycle	Upper Byte	Lower Byte
	2 nd bus cycle	Upper Byte	Lower Byte

Figure 8-1. Data flow at 16-bit width memory

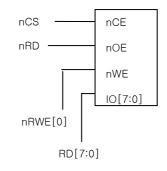

Byte size		Lower Byte
 Half word size	1 st bus cycle	Lower Byte
	2 nd bus cycle	Lower Byte
	1 st bus cycle	Lower Byte
Word size	2 nd bus cycle	Lower Byte
	3 rd bus cycle	Lower Byte
	4 th bus cycle	Lower Byte

Figure 8-2. Data flow at 8-bit width memory

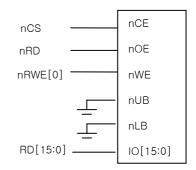


Figure 8-3. 16-bit bank configuration with 8-bit width memory

Figure 8-4. 8-bit bank configuration with 8-bit width memory

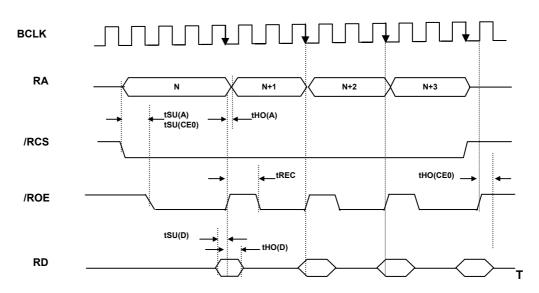


Figure 8-5. 16-bit bank configuration with 16-bit width memory

8.4 Read, Write Timing Diagram for External Memory

8.4.1 Read Access Timing (Single mode)

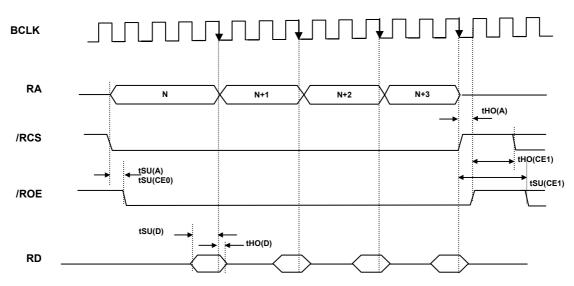


Figure 8-1 Read Access Timing (Single Mode)

Name	Description	Min	Typical	Unit	Note
tSU(A)	Address to /ROE falling-edge setup time		30		
tHO(A)	/ROE rising-edge to Address hold time		0	7	
tSU(CE0)	/RCS falling-edge to /ROE falling-edge setup time		30	7	
tHO(CE0)	/ROE rising-edge to /RCS rising-edge setup time		-15	ns	
tREC	/ROE negate to start of next cycle	30		7	
tSU(D)	Data setup time before latch	5		7	
tHO(D)	Data hold time after latch	0			

Table 8-2. Timing values for read access in single mode data transfer (BCLK=33MHz)

8.4.2 Read Access Timing (Burst mode)

Figure 8-2 Read Access Timing (Burst Mode)

Name	Description	Min	Typical	Unit	Note
tSU(A)	Address to /ROE falling-edge setup time		15		
tHO(A)	/ROE rising-edge to Address hold time		-15	7	
tSU(CE0)	/RCS falling-edge to /ROE falling-edge setup time		15	7	
tHO(CE0)	/ROE rising-edge to /RCS rising-edge setup time		-15	ns	
tHO(CE1)	/ROE or /RWE rising-edge to /RCS falling-edge hold time	45		7	
tSU(CE1)	/RCE rising-edge to /ROE or /RWE falling-edge setup time	75		7	
tSU(D)	Data setup time before latch	5		7	
tHO(D)	Data hold time after latch	0			

Table 8-3. Timing values for read access in burst mode data transfer (BCLK=33MHz)

8.4.3 Write Access Timing

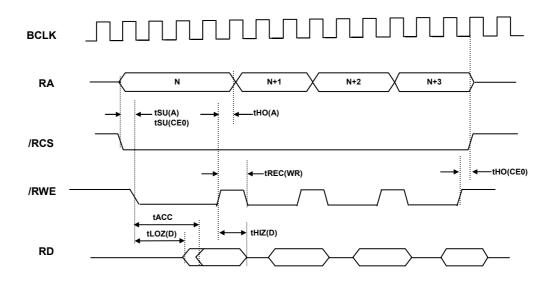


Figure 8-3 Write Access Timing

Name	Description	Min	Typical	Unit	Note
tSU(A)	Address to /RWE falling-edge setup time		15		
tHO(A)	/RWE rising-edge to Address hold time		15		
tSU(CE0)	/RCS falling-edge to /RWE falling-edge setup time		15		
tHO(CE0)	/RWE rising-edge to /RCS rising-edge setup time		15	ns	
tREC(WR)	/RWE negate to start of next cycle	30			
tHIZ(D)	/RWE rising edge to D Hi-Z delay		30		
tLOZ(D)	/RWE falling-edge to D driven	0			

Table 8-4. Timing values for write access (BCLK=33MHz)

9 AMBA PERIPHERALS

This chapter describes the peripherals that are connected to the 3.692308MHz internal peripheral bus; these are peripherals that need relatively low data rates on the internal bus. (call APB)

9.1 LCD CONTROLLER

FEATURES

- Single panel color and monochrome STN displays
- Resolution programmable up to 640x480
- Single panel STN displays with either 4- or 8-bit interfaces
- 8 and 12 bits per pixel for color display
- 1, 2, and 4 bits per pixel for monochrome display
- Big and little endian pixel order in a byte.
- Palette for 256 colors and 15 gray-level monochrome
- Programmable timing for various display panels
- Patented grayscale algorithm
- Relocatable frame buffer for Internal SRAM and SDRAM

Note. The controller does not support dual panel STN displays. There is no hardware cursor support, since WinCE does not use a cursor.

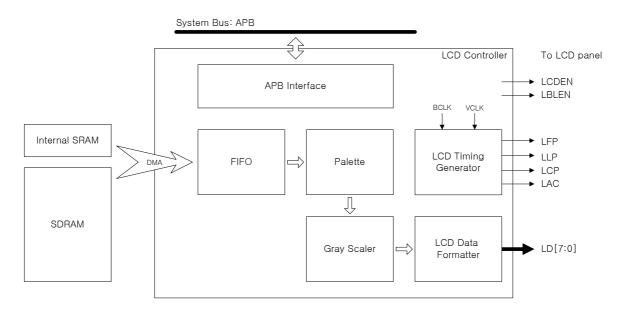


Figure 9-1. Block digram of LCD controller

9.1.1 External Signals

Pin Name	Туре	Description	
LCDEN	0	Power on/off signal fo	r a LCD panel
LBLEN	0	Backlight enable sign	al for a LCD panel
LFP	0	LCD frame pulse	(corresponds to FRAME pin of a LCD panel)
LLP	0	LCD line pulse	(corresponds to CL1 pin of a LCD panel)
LCP	0	LCD clock pulse	(corresponds to CL2 pin of a LCD panel)
LAC	0	LCD AC bias	
LD[7:0]	0	LCD data bus	

Refer to Figure 2-1. 208 Pin diagram.

9.1.2 Registers

Address	Name	Width	Default	Description
0x8005.2000	LcdControl	16	0000.0000	LCD Control Register
0x8005.2004	LcdStatus	4	0000.0000	LCD Status Register
0x8005.2008	LcdStatusM	4	0000.0000	LCD Status Mask Register
0x8005.200C	LcdInterrupt	4	0000.0000	LCD Interrupt Register
0x8005.2010	LcdDBAR	32	0000.0000	LCD DMA Channel Base Address Register
0x8005.2014	LcdDCAR	32	0000.0000	LCD DMA Channel Current Address Register
0x8005.2020	LcdTiming0	32	0000.0000	LCD Timing 0 Register
0x8005.2024	LcdTiming1	32	0000.0000	LCD Timing 1 Register
0x8005.2028	LcdTiming2	32	0000.0000	LCD Timing 2 Register
0x8005.2030	LcdPaletteR	32	7654.3210	LCD Palette for Red Color or LSP
0x8005.2034	LcdPaletteG	32	FEDC.BA98	LCD Palette for Green Color or MSP
0x8005.2038	LcdPaletteB	16	0000.FA50	LCD Palette for Blue Color

Table 9-1. LCD Controller Register Summary

9.1.2.1 LCD Control Register (LcdControl)

0x80052000

Image: Normal state in the image: Normal state intervel at the image: Normal state intervel intervel at the image: Normal state intervel inter	52000								
6 5 4 2 1 0 BGR LDW BW BLEN PWREN LCDEN Bits Type Function 31:14 - Reserved 13:12 RW VCMODE (Vertical Compare Mode) Generate interrupt at: 00 start of VSNC 01 - start of RONT PORCH 10 - start of BACK PORCH 10 - start of ACTIVE VIDE0 11 - Reserved 10 RW LEP (Little Endian Pixel) 0 - big endian pixel order in a byte 1 - little endian pixel order in a byte 1 - little endian pixel order in a byte 9:8 RW BPP (Bits Per Pixel) 00 - tbpp 11 - bBGR (Blue-Green-Red mode for color mode) 0 - ROB normal video output for LCD 1 - BGR red and blue swapped for LCD 1 - BGR red and blue swapped for LCD 1 - BGR red and blue swapped for LCD 1 - BUW (LCD Data bus Width for monochrome mode) 0 - Color operation enabled 3 - RWW BUK (Incochrome or color display mode) 0 - Color operation enabled 3 - Reserved 2 2 3 - Reserved				13	12		10	9	8
Bits Type Function 31:14 - Reserved 13:12 R/W VCMODE (Vertical Compare Mode) Generate interrupt at: 00 - start of VSYNC 01 - start of SACK PORCH 10 - start of ACK PORCH 0 11 - Reserved - 10 R/W LEP (Little Endian Pixel) 0 - big endian pixel order in a byte - 10 R/W LEP (Little Endian Pixel) 0 - big endian pixel order in a byte - 9:8 R/W BPP (Bits Per Pixel) 0 - bigp 0 - bigp 0 - bigp 0 - lopp 0 - 2ppp 10 - 4bpp 11 - 8bpp (for color display only) - 7 - Reserved - 6 R/W BCR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD - 5 R/W UCDV (LCD Data bus Width for monochrome mode) 0 - Color operation enabled 1 - 8-bit data width LCD module - 4 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin - 1 R/W BLEN (LCD Daver Enable) 0 - LCD oi onfoller disabled - 2 R/W BLEN (LCD Daver Enable) 0 - LCD oi onfoller disabled -				VCOMP			LEP	BPP	
Bits Type Function 31:14 - Reserved 13:12 R/W VCMODE (Vertical Compare Mode) Generate interrupt at: 00 - start of N2YNC 01 - start of BACK PORCH 01 - start of ACTIVE VIDEO 11 - Reserved 10 11 - Reserved - 10 R/W LEP (Little Endian Pixel) 0 - big endian pixel order in a byte - 10 R/W LEP (Little Endian Pixel) 0 - big endian pixel order in a byte - 11 - Reserved - 10 R/W BPP (Bits Per Pixel) 0 - 1bpp 0 - 1bpp 0 - 1bpp - 0 - 1bpp - 11 - 8BOR (Blue-Green-Red mode for color mode) - 0 - RGB normal video output for LCD - 1 - BGR red and blue swapped for LCD - 5 R/W BUW (LCD Data bus Width for monochrome mode) 0 - Color operation enabled - 1 - Nonochrome ocol or olor display mode) - 0 - Color operation enabled - 1 - NW BLEN (LCD Backlight Enable)		6	i	5	4		2	1	0
31:14 - Reserved 13:12 RW VCMODE (Vertical Compare Mode) Generate interrupt at: 00 - start of VSYNC 01 - start of BACK PORCH 10 - start of ACTIVE VIDEO 11 - start of FRONT PORCH 11 - Reserved 10 RW LEP (Little Endian Pixel) 0 - big endian pixel order in a byte 11 - Reserved 10 RW LEP (Little Endian Pixel) 0 - big endian pixel order in a byte 9:8 RW BPP (Bits Per Pixel) 00 - tbpp 01 - 2bpp 10 - 4bpp 7 - Reserved 6 RW BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 5 RW LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 4 RIW BW (monochrome or color display mode) 0 - Color operation enabled 3 - Reserved 2 RW BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 RIW DLON (LCD Controller Enable) 0 - LCD is off 1 - LCD is off 0 RW LCDEN (LCD Controller Enable) 0 - LCD controller disabled		B	BGR	LDW	BW		BLEN	PWREN	LCDEN
31:14 - Reserved 13:12 RW VCMODE (Vertical Compare Mode) Generate interrupt at: 00 - start of VSYNC 01 - start of BACK PORCH 10 - start of ACTIVE VIDEO 11 - start of FRONT PORCH 11 - Reserved 10 RW LEP (Little Endian Pixel) 0 - big endian pixel order in a byte 11 - Reserved 10 RW LEP (Little Endian Pixel) 0 - big endian pixel order in a byte 9:8 RW BPP (Bits Per Pixel) 00 - tbpp 01 - 2bpp 10 - 4bpp 7 - Reserved 6 RW BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 5 RW LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 4 RIW BW (monochrome or color display mode) 0 - Color operation enabled 3 - Reserved 2 RW BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 RIW DLON (LCD Controller Enable) 0 - LCD is off 1 - LCD is off 0 RW LCDEN (LCD Controller Enable) 0 - LCD controller disabled									
13:12 RW VCMODE (Vertical Compare Mode) Generate interrupt at: 00 - start of VSYNC 01 - start of VSYNC 01 - start of ACTIVE VIDEO 11 - start of FRONT PORCH 11 - Reserved 10 RW 10 RW 11 - Reserved 10 RW 11 - Reserved 10 RW 11 - Reserved 9:8 RW 9:7 - Reserved 6 RW 9:8 RW 9:9 (for color display only) 11 - Bbpp (for color display only) 11 - BCR red mode for color mode) 0 - A BGR normal video output for LCD 1 - BGR red and blue swapped for LCD 5 RW 8 W(monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation ena	Bits	Туре	Function						
Generate interrupt at: 00 - start of VSYNC 01 - start of SXNC 01 - start of ACK PORCH 10 - start of FRONT PORCH 11 - start of FRONT PORCH 11 - Reserved 10 10 RW LEP (Little Endian Pixel) 0 - big endian pixel order in a byte 1 - little endian pixel order in a byte 1 - little endian pixel order in a byte 9.8 RW BPP (Bits Per Pixel) 00 - 1bpp 01 - 2bpp 10 - Abpp 11 - Bop (for color display only) 7 - Reserved 6 RW BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 RW LOW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 1 - 8-bit data width LCD module 1 - Monochrome or color display mode) 0 - Color operation enabled 3 - Reserved 2 RW BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 - RW <	31:14	-							
00 - start of VSYNC 01 - start of AACK PORCH 10 - start of AACK PORCH 11 - Reserved 11 - Reserved 10 R/W LEP (Little Endian Pixel) 0 - big endian pixel order in a byte 1 - little endian pixel order in a byte 9:8 R/W BPP (Bits Per Pixel) 00 - tbpp 01 - 2bpp 10 - 80p 11 - Reserved 6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 1 - Nonochrome or color display mode) 0 - Color operation enabled 3 - Reserved 2 R/W BLEN (LCD Dacklight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller Enable) 0 - LCD controller Enable)	13:12	R/W	VCMODE (Vertical Compar	e Mode)				
01 - start of BACK PORCH 10 - start of ACTIVE VIDEO 11 - start of FRONT PORCH 11 - Reserved 10 R/W LEP (Little Endian Pixel) 0 - big endian pixel order in a byte 1 - little endian pixel order in a byte 1 - little endian pixel order in a byte 9:8 R/W BPP (Bits Per Pixel) 00 - 1bpp 01 - 2bpp 10 - 4bpp 11 - 8 Reserved 6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 1 - 8-bit data width LCD module 1 - Monochrome operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 RW PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled			Generate ir	nterrupt at:					
10 - start of ACTIVE VIDEO 11 - start of FRONT PORCH 11 - Reserved 10 R/W LEP (Little Endian Pixel) 0 - big endian pixel order in a byte 1 - little endian pixel order in a byte 9:8 R/W BPP (Bits Per Pixel) 00 - tbpp 01 - 4bpp 11 - Sbpp (for color display only) 7 - Reserved 6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W 1 - BGR red and blue swapped for LCD 1 - 8-bit data width LCD module 1 - 8-bit data width LCD module </td <td></td> <td></td> <td></td> <th></th> <th></th> <th></th> <td></td> <td></td> <td></td>									
11 - start of FRONT PORCH 11 - Reserved 10 R/W LEP (Little Endian pixel order in a byte 1-little endian pixel order in a byte 9:8 R/W BPP (Bits Per Pixel) 00 - 1bpp 01 - 2bpp 10 - 4bpp 9.7 - Reserved 6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 3 - Reserved 3 - Reserved 3 - Reserved 1 - Monochrome operation enabled 1 - Monochrome operation enabled 1 - Monochrome operation enabled 1 - Monochrome operation enabled 1 - R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W CLCD Data bus when LcdEn=1 0 R/W LCD Controller Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD is off 1 - LCD is ontroller Enable) 0 - LCD controller Enable) 0 - LCD controller Enable) 0 - LCD controller Enable) 0 - LCD controller Enable)			01 - start of	FBACK PORCH					
11 - Reserved 10 R/W LEP (Little Endian Pixel) 0 - big endian pixel order in a byte 1 - little endian pixel order in a byte 9:8 R/W BPP (Bits Per Pixel) 00 1 bpp 01 2bpp 10 4bpp 11 - Reserved 6 R/W 6 R/W 7 - Reserved 6 R/W 8 BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD bata bus Width for monochrome mode) 0 - Abit data width LCD module 1 - 8-bit data width LCD module 1 - 8-bit data width LCD module 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is on when LodEn=1 0 R/W LCDEN (LCD Controller Enable) 0 LCDEN (LCD			10 - start of	FACTIVE VIDEC)				
10 R/W LEP (Little Endian Pixel) 0 - big endian pixel order in a byte 1 - little endian pixel order in a byte 9:8 R/W BPP (Bits Per Pixel) 00 - 1bpp 01 - 2bpp 10 - 4bpp 11 - 8bpp (for color display only) 7 - Reserved 6 R/W BCR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 1 - Monochrome or color display mode) 0 - Color operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PVWEEN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCD Controller Enable) 0 - LCD N (LCD Controller Enable) 0 - LCD controller disabled			11 - start of	FRONT PORC	4				
0 - big endian pixel order in a byte 1 - little endian pixel order in a byte 9:8 R/W BPP (Bits Per Pixel) 00 - 1bpp 01 - 2bpp 11 - 8bpp (for color display only) 1 7 - Reserved 6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome or color display mode) 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled 0 - LCD controller disabled		-							
1 - little endian pixel order in a byte 9:8 RW BPP (Bits Per Pixel) 00 - 1bpp 01 - 2bpp 10 - 4bpp 11 - 8bpp (for color display only) 7 - Reserved 6 RW BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - 8GR red and blue swapped for LCD 5 RW LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD is on on then LcdEn=1 0 - LCD controller faable)	10	R/W	LEP (Little	Endian Pixel)					
9:8 R/W BPP (Bits Per Pixel) 00 - 1bpp 01 - 2bpp 10 - 4bpp 11 - 8bpp (for color display only) 7 - Reserved 6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD is on when LcdEn=1 0 - LCD controller disabled									
00 - 1bpp 01 - 2bpp 10 - 4bpp 11 - 8bpp (for color display only) 7 - 6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 1 - 8-bit data width LCD module 1 - 8-bit data width LCD module 1 - Nonochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 1 - Monochrome operation enabled) 1 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled			1 - little end	dian pixel order i	n a byte				
01 - 2bpp 10 - 4bpp 11 - 8bpp (for color display only) 7 - 6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 1 - Nonochrome or color display mode) 0 - Color operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD is ontroller Enable) 0 - LCD controller disabled	9:8	R/W	BPP (Bits F	Per Pixel)					
10 - 4bpp 11 - 8bpp (for color display only) 7 - 6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 1 - Monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W 9 WREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD is ontroller disabled			00 - 1bpp						
11 - 8bp (for color display only) 7 - 6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled			01 - 2bpp						
7 - Reserved 6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled			10 - 4bpp						
6 R/W BGR (Blue-Green-Red mode for color mode) 0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled			11 - 8bpp (f	for color display	only)				
0 - RGB normal video output for LCD 1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 3 - 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD is on troller Enable) 0 - LCD controller disabled	7	-							
1 - BGR red and blue swapped for LCD 5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 3 - 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD is on troller disabled	6	R/W	BGR (Blue-	-Green-Red mod	le for color mode)				
5 R/W LDW (LCD Data bus Width for monochrome mode) 0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 1 - 8-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Color operation enabled 1 - Monochrome operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 R/W LCDEN (LCD Controller Enable) 0 LCD controller disabled			0 - RGB no	rmal video outp	ut for LCD				
0 - 4-bit data width LCD module 1 - 8-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 3 - 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD isolf			1 - BGR red	d and blue swap	ped for LCD				
1 - 8-bit data width LCD module 4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled	5	R/W	LDW (LCD	Data bus Width	for monochrome r	mode)			
4 R/W BW (monochrome or color display mode) 0 - Color operation enabled 1 - Monochrome operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled			0 - 4-bit dat	ta width LCD mo	dule				
0 - Color operation enabled 1 - Monochrome operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled			1 - 8-bit dat	ta width LCD mo	dule				
1 - Monochrome operation enabled 3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled	4	R/W							
3 - Reserved 2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled			0 - Color op	peration enabled					
2 R/W BLEN (LCD Backlight Enable) This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled			1 - Monoch	rome operation	enabled				
This drives "0" or "1" out to the LCD backlight enable pin 1 R/W PWREN (LCD Power Enable) 0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled	3	-	Reserved						
1 R/W PWREN (LCD Power Enable) 0 - LCD is off 0 - LCD is off 1 - LCD is on when LcdEn=1 0 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled 0 - LCD controller disabled	2	R/W	BLEN (LCC	Backlight Enab	le)				
1 R/W PWREN (LCD Power Enable) 0 - LCD is off 0 - LCD is off 1 - LCD is on when LcdEn=1 0 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled 0 - LCD controller disabled			This drives	"0" or "1" out to	the LCD backlight	enable pin			
0 - LCD is off 1 - LCD is on when LcdEn=1 0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled	1	R/W				•			
0 R/W LCDEN (LCD Controller Enable) 0 - LCD controller disabled					•				
0 - LCD controller disabled			1 - LCD is c	on when LcdEn=	:1				
0 - LCD controller disabled	0	R/W	LCDEN (LC	CD Controller En	able)				
1 CD controller enabled					,				
1 - LCD controller enabled			1 - LCD cor	ntroller enabled					

9.1.2.2 LCD Controller Status/Mask and Interrupt Registers (LcdStatus, LcdStatusM, and LcdInterrupt)

0x80052004 ~ 0x8005200C

			3	2	1	0
			LDONE	VCOMP	LNEXT	LFUF
Bits	Туре	Function				
31:4	-	Reserved				
3	R	LDONE (LCD Done frame status/mask/intern The LCD Frame Done (Done) is a read-only the frame that is current active finishes being address (LcdDBAR) or enabling the LCD, or, is disabled by clearing the LCD enable bit (Lc before it is disabled. After the last set of pixel is disabled and Done is set.	status bit that is se output to the LCD by writing "1" to th cdEn=0) in LcdCor	's data pins. It is one LDone bit of the ntrol, the LCD allow	cleared by writi e Status Regist ws the current	ng the base er. When the LCD frame to complete
2	R/W	VCOMP (Vertical Compare status/mask/inter This bit is set when the LCD timing generator Control Register. This bit is "sticky", meaning	reaches the vertion	•		
1	R	LNEXT (LCD Next base address update state The LCD Next Frame (LNext) is a read-only s register are transferred to the LCD DMA curre LCD DMA base address register is written.	us/mask/interrupt b status bit that is se	oit) t after the content	is of the LCD D	MA base address
0	R/W	LFUF (FIFO Underflow status/mask/interrupt The LCD FIFO underflow (LFUF) status bit is meaning it remains set after the FIFO is no lo	set when the LCE			

9.1.2.3 LCD DMA Base Address Register (LcdDBAR)

Reserved. Keep these bits zero

~ ~	~ ~ -	~~ /	-
0x8	005	201	0

5:0

_

052010															
31	30	29	28	27	26	25	24	23	22	21	20	29	28	17	16
0	LcdDB/	٩R													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LcdDB	AR (conti	nued)								0	0	0	0	0	0
Bits	Туре	Fu	nction												
31	-	-		Keep the	ese bits z	ero									
30:6	R/W				Base Ad		inter								
		16-	word al	igned ba	se addres	ss of the	frame but	ffer (SDR	RAM or In	ternal SF	RAM)				

9.1.2.4 LCD DMA Channel Current Address Register (LcdDCAR)

)52014	_	_				_	_								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	
0	LcdDCA	R													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
LodDC	ND (contin									0	0	0	0	0	
LUUDU		nuea)								0	0	0	0	0	
LCUDC	CAR (contir	iuea)								U	0	0	U	0	
Bits	Туре		nction							U	0	U	U	U	_
		Fur	nction ad as ze	ero	_			_		U	U	U	U	U	
Bits	Туре	Fur	ad as ze		l Current	Address I	Pointer			0	0	0	0	0	
Bits 31	Type -	Fur Rea	ad as ze D DMA	Channe			Pointer hter to data	a in fram	e buffer c				0	0	

0x80052020

2020															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
HBP								HFP							
15	14	13	12	11	10	9	8		6	5	4	3	2	1	0
HSW									PPL						
Bits	Туре	F	unction												
31:24	R/W	TI ro nu pe tra	w of pixe umber of eriod rang	IBP field Is. After f pixel cloo ging from on before	is used to the line c cks to wa 1-256 pi the first	o specify lock for th it before ixel clock	ne previo starting t cycles (I	us line ha o output i Number o	as been the first s of LCLK o	periods to negated, set of pixe clock peri minus 1	the value els in the ods to a	e in HBP next line	is used t . HBP ge	o count t enerates	he a wait
23:16	R/W	TI pi H ra	xels befo FP is use	IFP field re pulsin d to cou m 1-256	is used to g the line nt the nui pixel cloo	o specify clock pir mber of p	n. Once a ixel clocl	a complet s to wait	e line of before p	periods to pixels is pulsing th ed minus	transmitt e line clo	ed to the	LCD dri	ver, the v	alue i
15:8	R/W	H TI lir	SW (Hori	zontal Sy ISW field It the end	nc Pulse is used of each	to specify		e width c	f the line	e clock. N	umber o	f LCLK c	lock peri	ods to pu	lse the
7	-	R	eserved												
6:0	R/W	Pi be	etween 16 e line clo	d to spec 6-2048 p ck can b	cify the nu ixels per e pulsed.	line. PPL	is used the valu	to count f	he corre	on the scr ct numbe d by 16, r	er of pixe			•	

9.1.2.5 LCD Timing 0 Register (LcdTiming0)

PPL = (actual_pixels_per_line / 16) – 1

9.1.2.6	LCD Timing	1 Register	(LcdTiming1)
			(

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	1
	00	23	20	21	20	20	-1	20			20	10			
0	_	_							_	_					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VSW						LPS									
Bits	Туре	Fu	nction												
31:16	R/W	Re	convod	Koont	hese bits	7010									
		1.0	seiveu.	iveeh i	nese nits	2610									
15:10	R/W				nc Pulse										
15:10		VS	SW (Verl	tical Sy	nc Pulse	Width)	extra dum	my line c	lock dela	ays betwe	en fram	es. The v	alue sho	ould be s	mall f
15:10		VS Th	SW (Verl e 6-bit \	tical Sy /SW fie	nc Pulse Id is used	Width) I to add e	extra dumi gh to re-pr								
15:10		VS Th ST	SW (Verf e 6-bit \ N LCD,	tical Sy /SW fie but sh	nc Pulse Id is used buld be lo	Width) I to add e ng enoug		rogram tl	he video	palette u	nder inte	errupt cor	trol, with	nout writi	ng the
15:10		VS Th ST vic	SW (Verf e 6-bit \ N LCD,	tical Sy /SW fie but sh tte at th	nc Pulse Id is used buld be lo	Width) I to add e ng enoug	gh to re-pi	rogram tl	he video	palette u	nder inte	errupt cor	trol, with	nout writi	ng the
15:10		VS Th ST vic VS	SW (Verl e 6-bit \ N LCD, leo pale	tical Sy /SW fie but sh tte at th nus 1.	nc Pulse Id is used ould be lo le same t	Width) I to add e ng enoug	gh to re-pi	rogram tl	he video	palette u	nder inte	errupt cor	trol, with	nout writi	ng the
15:10 9:0		VS Th ST vic VS VS	SW (Veri e 6-bit \ N LCD, leo pale Sync mir	tical Sy /SW fie but sh tte at th nus 1. of lines	nc Pulse Id is used buld be lo le same t – 1	Width) I to add e ng enoug	gh to re-pi	rogram tl	he video	palette u	nder inte	errupt cor	trol, with	nout writi	ng th
	R/W	VS Th ST vic VS VS LP	SW (Vert e 6-bit \ N LCD, leo pale Sync mir SW = # c S (Lines	tical Sy /SW fie but sh tte at th nus 1. of lines s Per S	nc Pulse Id is used buld be lo le same t – 1 creen)	Width) I to add e ng enoug ime as vio	gh to re-pi	rogram ti ng displa	he video ayed. The	palette u e register	nder inte is progr	errupt cor ammed v	trol, with vith the n	iout writi iumber c	ng th of line
	R/W	VS Th ST vic VS VS LP Th	SW (Veri e 6-bit \ N LCD, leo pale Sync mir SW = # c S (Lines e LPS b	tical Sy /SW fie but sh tte at th tus 1. of lines s Per S pit-field	nc Pulse Id is used buld be lo le same t <u>– 1</u> creen) is used to	Width) I to add e ng enoug ime as vio	gh to re-pr deo is bei	rogram ti ng displa	he video ayed. The s or rows	palette u e register	nder inte is progr	errupt cor ammed v	trol, with vith the n	nout writi number c	ng the of line 10-bit
	R/W	VS Th ST VS VS VS LP Th va	SW (Veri e 6-bit \ N LCD, leo pale Sync mir SW = # c S (Lines e LPS b	tical Sy /SW fie but sh tte at th tus 1. of lines s Per S pit-field	nc Pulse Id is used buld be lo le same t <u>– 1</u> creen) is used to	Width) I to add e ng enoug ime as vio	gh to re-pi deo is bei he numbe	rogram ti ng displa	he video ayed. The s or rows	palette u e register	nder inte is progr	errupt cor ammed v	trol, with vith the n	nout writi number c	ng the of line 10-bit

9.1.2.7 LCD Timing 2 Register (LcdTiming2)

	30	29	28				24	23	22	21	20			17
IAC	ICP	ILP	IFP				ACB							CPL
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
CPL (cc	ntinued)							LCS	CSD		PCD			
Bits	Туре	Fur	nction											
31	R/W		·	t LAC pir	,									
							arity of the	LAC sigr	nal.					
							tive LOW ive HIGH							
30	R/W			t LCP pir										
00	1011			•	,	t which e	edge of the	pixel clo	ck pixel o	data is d	riven out	onto the	LCD's d	ata lines. \
							s data lines							
					n the fallin									
							lines on th							
20	D/\//					D's data	lines on th	e talling-	edge of L	LCP.				
29	R/W			LLP pin		the note	rity of the I	P cian	al					
							ive LOW.	LI SIYII	uı.					
							ve HIGH.							
28	R/W			LFP pin										
							rity of the	_FP sign	al.					
							ive LOW.							
07.05				n is active	e LOW a	nd inacti	ve HIGH.							
27:25 24:20	- R/W		served	Dian nin d		4								
24.20	F\/ VV				requency		y the numb	er of line	clock ne	oriods to	count he	ween e	ach togal	le of the A
							ically inver							
							nmed is th							.go sana e
				f lines –										
19:18	-													
		Res	served											
17:8	R/W	Res CPI	L (Cloc	ks Per Li	,			1.00			· 4 -			
17:8	R/W	Res CPI This	L (Cloc s is the	actual n	umber of		output to th	•						
17:8	R/W	Res CPI This add	L (Cloc s is the lition to	actual n the PPL	umber of field in t	he LCD [.]	Timing 0 R	egister.	The numb	per of clo	ocks per li	ne is the	e numbei	r of pixels
17:8	R/W	Res CPI This add line	L (Cloc s is the lition to divide	actual n the PPL d by 4, 8	umber of field in th or two-a	he LCD ⁻ nd-two-tl		egister.	The numb	per of clo	ocks per li	ne is the	e numbei	r of pixels
7	R/W R/W	Res CPI This add line CPI	L (Cloc s is the lition to divideo L = actu	actual n the PPL d by 4, 8 ual_clock	umber of field in t	he LCD ⁻ nd-two-tl ne – 1	Timing 0 R	egister.	The numb	per of clo	ocks per li	ne is the	e numbei	r of pixels
		Res CPI This add line CPI LCS	L (Cloc s is the lition to divided L = actu S (LCD	actual n the PPL d by 4, 8 ual_clock Clock S	umber of field in th or two-a s_per_lin	he LCD ⁻ nd-two-tl ne – 1 ection)	Timing 0 R	egister.	The numb	per of clo	ocks per li	ne is the	e numbei	r of pixels
7	R/W	Res CPI This add line CPI LCS 0 - 1 1 - 1	L (Cloci s is the lition to divided L = actu S (LCD System Video c	actual n the PPL d by 4, 8 ual_clock Clock S n bus cloc clock fror	umber of field in tl or two-a s <u>s_per_lir</u> ource sel ck (BCLk n PMU (\	ne LCD ⁻ nd-two-tl ne – 1 ection) () /CLK)	Timing 0 R	egister.	The numb	per of clo	ocks per li	ne is the	e numbei	r of pixels
		Res CPI This add line CPI LCS 0 - 3 1 - ¹	L (Cloc s is the lition to divided L = actu S (LCD System Video c D (LCD	actual n the PPL d by 4, 8 ual_clock Clock S bus cloc clock fror Clock S	umber of field in th or two-au ss_per_lin ource sel ck (BCLk n PMU (\ ource Dir	ne LCD [*] nd-two-tl ne – 1 ection) () /CLK) visor)	Timing 0 R hirds for m	egister. ono 4-bit	The numb mode, m	per of clo nono 8-b	ocks per li it, or colo	ne is the r STN m	e number node (2 ² /2	r of pixels 3) respecti
7	R/W	Res CPI This add line CPI LCS 0 - 5 1 - ¹ CSI The	L (Cloc s is the lition to divided L = actu S (LCD System Video c D (LCD e select	actual n the PPL d by 4, 8 <u>ual_clock</u> Clock S b bus cloc clock fror Clock S ed clock	umber of field in th or two-au <u>(s_per_lin</u> ource sel ck (BCLK <u>n PMU (\</u> ource Dir by LCS I	ne LCD ⁻ nd-two-tl ne – 1 ection) (CLK) visor) bit is divi	Timing 0 R	egister. ono 4-bit	The numb mode, m	per of clo nono 8-b	ocks per li it, or colo	ne is the r STN m	e number node (2 ² /2	r of pixels 3) respecti
7	R/W	Res CPI This add line CPI LCS 0 - 1 1 - 1 CSI The cloo	L (Cloc s is the lition to divided L = actu S (LCD System Video c D (LCD e select ck of LC	actual n the PPL d by 4, 8 ual_clock Clock S b bus cloc clock fror Clock S ed clock CD contro	umber of field in th or two-au ss_per_lin ource sel ck (BCLk n PMU (\ ource Dir	ne LCD ⁻ nd-two-tl ne – 1 ection) (CLK) visor) bit is divi	Timing 0 R hirds for m	egister. ono 4-bit	The numb mode, m	per of clo nono 8-b	ocks per li it, or colo	ne is the r STN m	e number node (2 ² /2	r of pixels 3) respecti
7	R/W	Res CPI This add line CPI LCS 0 - 1 1 - 1 CSI The cloc 00 -	L (Cloc s is the lition to divided L = actu S (LCD System Video c D (LCD c select ck of LC – no div	actual n the PPL d by 4, 8 ual_clock Clock S b bus cloc clock fror Clock S ed clock CD contro	umber of field in th or two-ai s <u>per_lir</u> ource sel ck (BCLK n PMU (\ ource Dir by LCS I bler, LCL	ne LCD ⁻ nd-two-tl ne – 1 ection) (CLK) visor) bit is divi	Timing 0 R hirds for m	egister. ono 4-bit	The numb mode, m	per of clo nono 8-b	ocks per li it, or colo	ne is the r STN m	e number node (2 ² /2	r of pixels 3) respecti
7	R/W	Res CPI This add line CPI LCS 0 - : 1 - ¹ CSI The cloc 00 - 01 -	L (Cloc s is the lition to divided L = actu S (LCD System Video c D (LCD e select ck of LC – no div – clock	actual n the PPL d by 4, 8 <u>Jal_clock</u> Clock S h bus cloc clock fror 0 Clock S red clock CD contro vision	umber of field in th or two-ai source sel ck (BCLk n PMU (\ ource Dir by LCS I oller, LCL d by 4	ne LCD ⁻ nd-two-tl ne – 1 ection) (CLK) visor) bit is divi	Timing 0 R hirds for m	egister. ono 4-bit	The numb mode, m	per of clo nono 8-b	ocks per li it, or colo	ne is the r STN m	e number node (2 ² /2	r of pixels 3) respecti
7 6:5	R/W	Res CPI This add line CPI LCS 0 - 3 1 - 1 CSI The cloc 00 - 01 - 10 - 11 -	L (Cloc s is the lition to divided L = actu S (LCD System Video c D (LCD e select ck of LC – no div – clock – clock – resen	actual n the PPL d by 4, 8 ual_clock Clock S b bus clock clock fror O Clock S ed clock CD contro vision is divide is divide ved	umber of field in th or two-ai ss_per_lin ource sel ck (BCLk n PMU (\ ource Dir by LCS I bler, LCL d by 4 d by 16	ne LCD ⁻ nd-two-tl ne – 1 ection) (CLK) visor) bit is divi	Timing 0 R hirds for m	egister. ono 4-bit	The numb mode, m	per of clo nono 8-b	ocks per li it, or colo	ne is the r STN m	e number node (2 ² /2	r of pixels 3) respecti
7	R/W	Res CPI This add line CPI LCS 0 - 3 1 - 1 CSI The cloc 00 - 01 - 10 - 11 - PCI	L (Cloc s is the divided L = actu S (LCD System Video c D (LCD Select ck of LC - no div - clock - clock - resen D (Pixe	actual n the PPL d by 4, 8 ual_clock Clock S b bus cloc clock for O Clock S ed clock CD contrevision is divide is divide ved	umber of field in th or two-ai s_per_lin ource sel ck (BCLK n PMU (\ ource Dir by LCS I by LC	he LCD ¹ nd-two-th ection) () /CLK) visor) bit is divi K.	hirds for m	egister. ono 4-bit	The numt	per of cla nono 8-b	ocks per li iit, or colo	ne is the r STN m	e number node (2 ² /2	r of pixels (3) respecti
7 6:5	R/W R/W	Res CPI This add line CPI LCS 0 - 3 1 - ¹ CSI The cloc 00 - 01 - 10 - 11 - PCI PCI	L (Cloc s is the lition to divided L = actu S (LCD System Video c D (LCD e select ck of LC - no div - clock - clock - resen D (Pixe D is use	actual n the PPL d by 4, 8 ual_clock Clock S b bus clock clock for O Clock S ed clock CD contrevision is divide is divide ved d Clock E ed to spe	umber of field in th or two-ai s_per_lin ource sel ck (BCLK n PMU (\ ource Dir by LCS I biller, LCL d by 4 d by 16 Divisor) ecify the f	ne LCD ¹ nd-two-th ection) () (CLK) visor) bit is divi K.	ded by LC	egister. ono 4-bit D pre-div ignal bas	rhe numb mode, n vider. The	cer of cla nono 8-b e divided	ocks per li iit, or colo	ne is the r STN m	e number node (2 ² /2	r of pixels (3) respecti
7 6:5	R/W R/W	Res CPI This add line CPI LCS 0 - 3 1 - ¹ CSI The cloc 00 - 01 - 10 - 11 - PCI PCI from	L (Clocc s is the divided L = actured S (LCD System Video c D (LCD D (LCD C = no div - clock - clock - clock - clock - resen D (Pixe D (Signa - Clock - no div - clock - clocl	actual n the PPL d by 4, 8 ual_clock Clock S b bus clock clock for O Clock S ed clock CD contrevision is divide is divide ved d Clock E ed to spe (/2 to LC	umber of field in th or two-ai s_per_lin ource sel ck (BCLK n PMU (\ ource Dir by LCS I biller, LCL d by 4 d by 16 Divisor) ecify the f LK/33, wi	ne LCD ¹ nd-two-th ection) () (CLK) visor) bit is divi K.	hirds for m	egister. ono 4-bit D pre-div ignal bas	rhe numb mode, n vider. The	cer of cla nono 8-b e divided	ocks per li iit, or colo	ne is the r STN m	e number node (2 ² /2	r of pixels (3) respecti
7 6:5	R/W R/W	Res CPI This add line CPI LCS 0 - 3 1 - ¹ CSI The cloc 00 - 01 - 10 - 11 - PCI PCI from fLCP	L (Clocc s is the divided L = actured S (LCD System Video c D (LCD D (LCD C = oselect ck of LC - no div - clock - clock - clock - clock - clock - resen D (Pixe D is uso n LCLK = fLcLK	actual n the PPL d by 4, 8 ual_clock Clock S b bus clock clock fror O Clock S ed clock CD contrevision is divide ved d Clock I ed to spec (/2 to LC / (PCD	umber of field in th or two-ai s_per_lin ource sel ck (BCLK n PMU (\ ource Dir by LCS I biller, LCL d by 4 d by 16 Divisor) ecify the f LK/33, wi + 2)	he LCD ⁻ nd-two-th ection) () (CLK) visor) bit is divi K. requenc here LCI	Timing 0 R hirds for m ded by LC y of LCP s LK is the c	egister. ono 4-bit D pre-div ignal bas ock divic	rhe numb mode, m vider. The sed on LC	cer of clo nono 8-b e divided CLK freq SD.	uency. Pi	ne is the r STN m lock bec	e number node (2 ² /2 comes the	r of pixels (i) respecti e fundame cy can ran
7 6:5	R/W R/W	Res CPI This add line CPI LCS 0 - 3 1 - ¹ CSI The cloc 00 - 01 - 10 - 11 - PCI PCI from fLCP Not	L (Clocc s is the divided L = actured S (LCD System Video c D (LCD D (LCD C = select ck of LC - no div - clock - clocl	actual n the PPL d by 4, 8 ual_clock Clock S b bus clock clock for O Clock S ed clock CD contrevision is divide ved d Clock I ed to spec (/2 to LC / (PCD LCP is not	umber of field in th or two-ai s_per_lin ource sel ck (BCLK n PMU (\ ource Dir by LCS I biller, LCL d by 4 d by 16 Divisor) ecify the fi LK/33, wi + 2) t the frequ	he LCD ⁻ nd-two-th ection) () /CLK) visor) bit is divi K. requenc here LCI uency of	timing 0 R hirds for m ded by LC y of LCP s LK is the cl	egister. ono 4-bit D pre-div ignal bas ock divic	rhe numt mode, m vider. The sed on LC led by CS	click freq CLK freq SD. at individ	uency. Pis dual pixels	ne is the r STN m lock bec	e number node (2 ² / comes the	r of pixels) respecti e fundame cy can ran e LCD. In
7 6:5	R/W R/W	Res CPI This add line CPI LCS 0 - 3 1 - ¹ CSI The cloc 00 - 01 - 10 - 11 - PCI PCI from fLCP Not norm	L (Clocc s is the divided L = actured S (LCD System Video c D (LCD D (LCD C = oselect ck of LC - no div - clock - cloc	actual n the PPL d by 4, 8 <u>ual_clock</u> Clock S b bus clock clock for O Clock S ed clock CD contrevision is divide ved d Clock I ed to spec (/2 to LC / (PCD LCP is not ono mode	umber of field in the or two-autors and ss_per_lim ource seleck (BCLK n PMU (\ ource Dir by LCS I by L	he LCD ⁻ nd-two-th ection) () /CLK) visor) bit is divi K. requenc here LCI uency of terface),	Timing 0 R hirds for m ded by LC y of LCP s LK is the c	egister. ono 4-bit D pre-div ignal bas ock divic ninal cloc are out	rhe numb mode, m vider. The sed on LC led by CS sk rate that put per LC	click freq CLK freq SD. at indivic	uency. Pix dual pixels so the F	ne is the r STN m lock bec kel clock	e number node (2 ² / comes the comes the put to the k is one	r of pixels (a) respecting the fundame cy can ran e LCD. In quarter th
7 6:5	R/W R/W	Res CPI This add line CPI LCS 0 - 3 1 - ¹ CSI The cloc 00 - 01 - 10 - 11 - PCI PCI from fLCP Not norn	L (Clocc s is the divided L = actured S (LCD System Video c D (LCD e select ck of LC - no div - clock - clock	actual n the PPL d by 4, 8 <u>ual_clock</u> Clock S b bus clock clock for O Clock S ed clock CD contrevision is divide ved I Clock L ed to spec (/2 to LC / (PCD LCP is not ono mode xel rate.	umber of field in th or two-ai <u>s_per_lin</u> ource sel ck (BCLK <u>n PMU (\</u> ource Dir by LCS I by LCS I b	he LCD nd-two-th nd -two-th ection) () /CLK) visor) bit is divi K. requence here LCl uency of terface), se of 8-b	timing 0 R hirds for m ded by LC y of LCP s LK is the cl some non four pixels	egister. ono 4-bit D pre-div ignal bas ock divic ninal cloc are out	rhe numt mode, m vider. The sed on LC led by CS k rate tha but per LC ock is on	CLK freq CLK freq SD. at indivic CP cycle e-eight	uency. Piz dual pixels so the F the nomi	ne is the r STN m lock bec kel clock s are out ixelCloc nal pixe	e number node (2 ² / comes the comes the put to the k is one I rate, sir	r of pixels (a) respecting (b) respecting (c) respecting (

MagnaChip•

9.1.2.8 LCD Palette Registers (LcdPaletteR, LcdPaletteG, LcdPaletteB, LcdPaletteLSP, and LcdPaletteMSP)

0x800	52030	LcdPale	etteR (Lc	dPalettel	SP for n	nonochro	me displ	ay)								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Palette	value for	pixel va	lue 7	Palette	value for	pixel va	lue 6	Palette	value for	r pixel val	ue 5	Palette	value fo	r pixel va	lue 4
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Palette	value for	pixel va	lue 3	Palette	value for	pixel va	lue 2	Palette	value for	r pixel val	ue 1	Palette	value fo	r pixel va	lue 0
0x800	52034	LcdPale	etteG (Lo	dPalettel	MSP for	monochro		lay)								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Palette	value for	pixel va	lue 7	Palette	value for	pixel va	lue 6	Palette	value for	r pixel val	ue 5	Palette	value fo	r pixel va	lue 4
	or pixel	value 15	for mon	o disp	or pixel	value 14	for mon	o disp	or pixel	value 13	3 for mon	o disp	or pixel	value 12	2 for mor	no disp
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Palette	value for	pixel va	lue 3	Palette	value for	pixel va	lue 2	Palette	value for	r pixel val	ue 1	Palette	value fo	r pixel va	lue 0
	or pixel	value 11	for mon	o disp	or pixel	value 10	for mon	o disp	or pixel	value 9	for mono	disp	or pixel	value 8	for mono	o disp
0x800	52038	LcdPale	etteB													
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Palette	value for	pixel va	lue 3	Palette	value for	pixel va	lue 2	Palette	value for	r pixel val	ue 1	Palette	value fo	r pixel va	lue 0

9.1.3 LCD controller datapath

User can use both internal SRAM and SDRAM for storage of LCD frame data. The base address of frame data (LcdDBAR) can be located in the internal SRAM as well as SDRAM. If the size of frame data is larger than that of the internal SRAM, the rest of data must be stored in the head of SDRAM. However, user does not have to care about it, because the head of SDRAM is seamlessly connected to the tail of the internal SRAM (refer to Memory Map). DMA of LCD controller will switch between both areas and get proper frame data from them.

FIFO is designed to store 32 words. If user chooses 1 bpp mode for pixel data width, FIFO can store 1024 pixel data at a time. One DMA operation will fill FIFO with 16 words of frame data. The frame data coming out from FIFO will be divided into each pixel or each color component for color mode. Then it is translated by palette registers. The translated pixel or color value has 4-bit width, no matter which bpp mode user chooses. Gray scaler block convert these 4 bit gun data in a single bit per gun, using a patented time/space dither algorithm.

The output of the gray scaler is fed to the LCD data formatter, which formats the pixels in the correct order for the LCD panel type in use: 4 or 8 mono pixels per clock for mono panels, or 2 $\frac{2}{3}$ pixels per clock for color data. The output of the formatter in color mode is bursty, due to the 2 $\frac{2}{3}$ pixels per clock that are output, so the formatter output goes to a small FIFO, which smoothes out this burstiness, before data is output to the LCD panel at a constant rate.

9.1.4 Color/Grayscale dithering

Entries selected from the look-up palette are sent to the color/grayscale space/time base dither generator. Each 4-bit value is used to select one of 15 intensity levels. Note that two of the 16 dither values are identical. The table below assumes that a pixel data input to the LCD panel is active HIGH. That is, a '1' in the pixel data stream will turn the pixel on, and a '0' will turn it off. If this is not the case, the intensity order will be reversed, with "0000" being the most intense color. This polarity is LCD panel dependent.

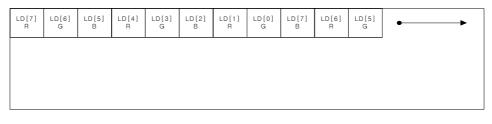
The gray/color intensity is controlled by turning individual pixels on and off at varying periodic rates. More intense grays/colors are produced by making the average time that the pixel is off longer than the average time that it is on. The proprietary dither algorithm is optimized to provide a range of intensity values that match the eye's visual perception of color/gray gradations, with smaller changes in intensity nearer to the mid-gray level, and greater nearer the black and the white levels. In color mode, red, green and blue components are gray-scaled simultaneously as if they were mono pixels. The duty cycle and resultant intensity level for all 15 color/grayscale levels is summarized in Table 9-1: Color/grayscale intensities and modulation rates.

Dither Value (4 bit value from palette)	Intensity (0% is white)	Modulation Rate (ration of ON to ON+OFF pixels)
1 1		(ration of ON to ON+OFF pixels)
1111	100.0	1
1110	100.0	1
1101	88.9	8/9
1100	80.0	4/5
1011	73.3	11/15
1010	66.6	6/9
1001	60.0	3/5
1000	55.6	5/9
0111	50.0	1/2
0110	44.4	4/9
0101	40.0	2/5
0100	33.3	3/9
0011	26.7	4/15
0010	20.0	1/5
0001	11.1	1/9
0000	0.0	0

Table 9-2. LCD Color/Grayscale Intensities and Modulation Rates

9.1.5 LCD panel dependent settings

These registers need to be set carefully according to a LCD panel specification.


- BW : Monochrome or color display
- BGR : RGB or BGR for color display
- LDW : LCD Data bus width
- IFP, ILP, ICP, IAC : Signal polarity
- PPL, CPL, LPS : Resolution
- LCS, CSD, PCD : Fundamental clock
- VFP, VBP, VSW, HFP, HBP, HSW, ACB : Control timing
- PWREN, BLE : LCD panel on/off control

If a LCD panel is monochome, set **BW** as 1. For a color LCD panel, set **BW** as 0.

In the case of a color LCD panel, the sequence of color components in a pixel can differ by product. Most panels have red as the first color components of a pixel and blue as the last one. In this case, set **BGR** as 0. If **BGR** is set as 1, LCD controller displays a blue component in the first and green and red in a row. Hence, you can display a image without changing the original data to a LCD panel with the different color sequence.

LCD controller supports 8-bit data bus for a color LCD panel. However, for a mono LCD panel, 4-bit and 8-bit data bus are possible. If you set **LDW** as 0, LCD controller displays pixels through LD[3:0]. Set **LDW** as 1 to display though LD[7:0]. The pixel display sequence is depicted in Figure 9-2. The first pixel is output to the MSB of LD. In the color display mode, the first color component is displayed in the first.

Color LCD Panel (BGR = 0)

Color LCD Panel (BGR = 1)

LD[7] B	LD[6] G	LD[5] R	LD[4] B	LD[3] G	LD[2] R	LD[1] B	LD[0] G	LD[7] R	LD[6] B	LD [5] G	•

Mono LCD Panel with 8-bit data bus

 •	LD[5]	LD[6]	LD[7]	LD[0]	LD[1]	LD[2]	LD[3]	LD[4]	LD[5]	LD[6]	LD[7]

Mono LCD Panel with 4-bit data bus

LD[3]	LD[2]	LD[1]	LD[0]	LD[3]	LD[2]	LD[1]	LD[0]	LD[3]	LD[2]	LD[1]	•

Figure 9-2. Pixel display sequence of LD bus

The LCD panel signals, LFP, LLP, LCP, LAC, LD, LCDEN, and LBLEN, are active high. Hence, the timing diagrams for the signals are shown as active high signals. However, some LCD panels have active low signals. To display images in such panels without any glue logics, LCD controller can program a polarity of each signal. If set **IFP** as 1, LFP pin becomes active low and it is driven low at the start of a new frame. **ILP**, **ICP**, and **IAC** work likewise. It is depicted in Figure 9-3.

ICP can be used to adjust timing of the LCD panel signals. LCD controller drives the signals at the rising edge of LCP when **ICP = 0**. It is to stable the signals at the falling edge of LCP because of most LCD panels read the signals at that time. However, if the timing of LCD panel signals is changed by glue logics such as a voltage level shifter or a LCD panel read the signals at the rising edge of LCP, you can use **ICP** to ensure the timing margin for such cases. The LCD panel signals are driven at the falling edge of LCP when set **ICP** as 1.

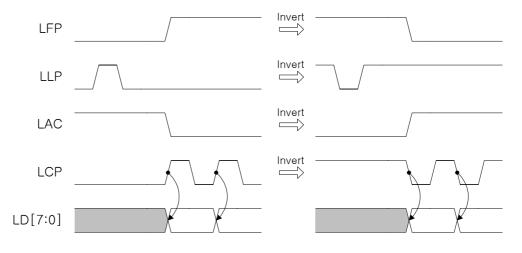


Figure 9-3. Changing polarity of LCD panel signals

PPL is to set the number of pixels in each line. **PPL** = (actual_pixels_per_line / 16) - 1

CPL is to set the number of clocks in each line. It is different to **PPL** because STN LCD panels display several pixels for a clock. **CPL** can be calculated as follows:

	BW = 0	BW = 1
	(Mono)	(Color)
LDW = 0 (4-bit data bus)	(actual_pixels_per_line / 4) - 1	-
LDW = 1 (8-bit data bus)	(actual_pixels_per_line / 8) - 1	(actual_pixels_per_line x 3 / 8) - 1

LPS is to set the numer of lines per screen. **LPS** = actual_lines_per_screen - 1

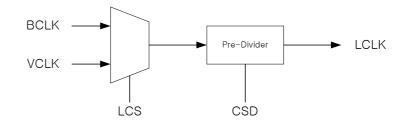
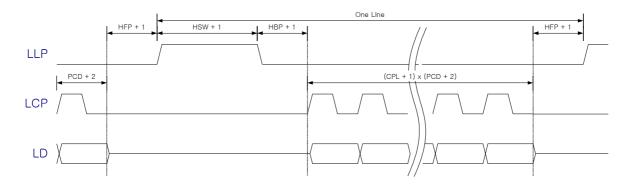


Figure 9-4. Block diagram of clock source generation


LCD controller can have two different clock sources to generate LCD panel signals. If you want to use system bus clock, BCLK, set **LCS** as 0. VCLK also can be used which is generated In PMU. In this case, set **LCD** as 1.

Before the selected clock source is used in LCD controller, it is divided by **CSD**. After the division, LCLK is the fundamental clock that is used to generated LCD panel signals. The frequency of LCLK is as follows:

	LCS = 0 (BCLK)	LCS = 1 (VCLK)	
CPD = 00 (No division)	f _{BCLK}	fvclk	
CPD = 01 (1/4 division)	f _{BCLK} / 4	f _{VCLK} / 4	
CPD = 10 (1/16 division)	f _{BCLK} / 16	f _{VCLK} / 16	
CPD = 11 (Reserved)	Unknown	Unknown	

 $\begin{array}{l} \textbf{PCD} \text{ is to set the frequence of LCP.} \\ f_{\text{LCP}} = f_{\text{LCLK}} \ / \ (\ \textbf{PCD} + 2 \) \\ \text{Hence, the period of LCP is } (\textbf{PCD} + 2) \text{ times to the period of LCLK.} \\ t_{\text{LCP}} = t_{\text{LCLK}} \ x \ (\ \textbf{PCD} + 2 \) \\ \text{To ensure proper operation of LCD controller, there is lower bound value of PCD.} \end{array}$

	BW = 0 (Mono)	BW = 1 (Color)	
LDW = 0 (4-bit data bus)	PCD >= 2	-	
LDW = 1 (8-bit data bus)	PCD >= 6	PCD >= 2	

Figure 9-5. Timing diagram of a line with LLP, LCP, and LD signals

Figure 9-5 shows the timing diagram of a line displayed by LCD controller. The unit of dimension is the period of LCLK. **PCD** controls LCP signal as explained above. And **HFP**, **HSW**, and **HBP** control LLP signal.

The period and frequence of a line can be calculated:

 $t_{\text{line}} = (t_{\text{LCP}} x (\text{CPL} + 1)) + (t_{\text{LCLK}} x (\text{HFP} + 1 + \text{HSW} + 1 + \text{HBP} + 1)) \\ = t_{\text{LCLK}} x ((\text{CPL} + 1) x (\text{PCD} + 2) + (\text{HFP} + 1 + \text{HSW} + 1 + \text{HBP} + 1)) \\ f_{\text{line}} = f_{\text{LCLK}} / ((\text{CPL} + 1) x (\text{PCD} + 2) + (\text{HFP} + 1 + \text{HSW} + 1 + \text{HBP} + 1))$

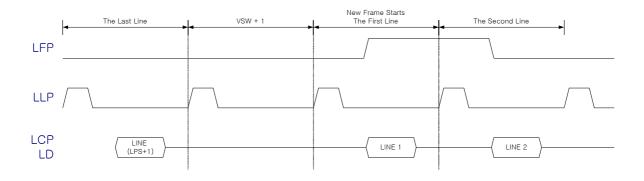


Figure 9-6. Timing diagram of LFP signal

Figure 9-6 shows the timing diagram of LFP signals that is controlled by **VSW**. The unit of dimension is the period of a line. LCP and LD signal are drawn as simplified. Every new frame starts with active LFP. The period and frequence of a frame are:

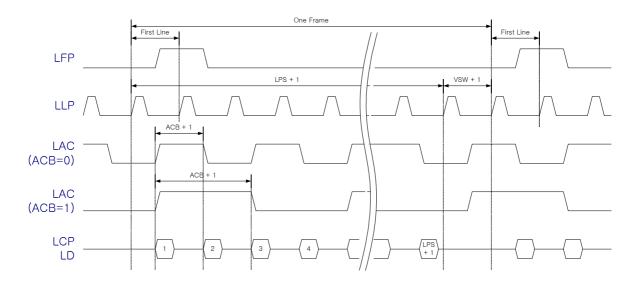


Figure 9-7. Timing diagram of a frame be different by the differ

Figure 9-7 depicts the complete waveform of a frame. The unit of dimension is the period of a line.

You can choose **ACB** to toggle the bias level of a LCD panel. If a LCD panel uses LAC pin, the value must be carefully determined to ensure the average bias level of LAC as 0. If the average bias is not 0, the LCD panel may suffer long-term damage. To avoid this, the total line number, (**LPS** + 1 + **VSW** + 1), should not be the integer multiple propotion of $2 \times (ACB + 1)$.

9.1.6 Frame data dependent settings

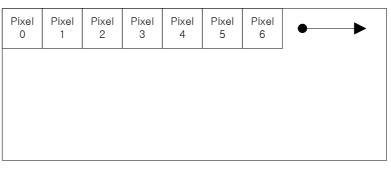
- LcdDBAR : Frame memory address
- BPP : Bits per pixel
- LEP : Endian mode in a byte
- LcdPaletteR, LcdPaletteG, LcdPaletteB, LcdPaletteMSP, LcdPaletteLSP : Palette data

The LCD DMA base address register (LcdDBAR) is a read/write register used to specify the base address of the off-chip frame buffer for the LCD. Addresses programmed in the base address register must be aligned on sixteen-word boundaries, thus the least significant six bits (LcdDBAR [5:0]) must always be written with zeros. 31 bits of the register, including the LS 6 bits which must be zero, are valid, because LCD DMA is allowed from SDRAM and the internal SRAM. The most significant bit of LcdDBAR is assumed as '0'.

User must initialize the base address register before enabling the LCD, and may also write a new value to it while the LCD is enabled to allow a new frame buffer to be used for the next frame. The user can change the state of **LcdDBAR** while the LCD controller is active, after the next frame status bit (**LNEXT**) is set within the LCD's status register that generates an interrupt request. This status bit indicates that the value in the base address pointer has been transferred to the current address pointer register and that it is safe to write a new base address value. This allows double-buffered video to be implemented if required.

The LCD palette registers are a set of two word and one half-word registers that allow the LCD to be programmed. These registers are used for both color and monochrome display. The format of the palette data is shown below.

In the color display mode, **LcdPaletteR** register translates pixel values for red color component. **LcdPaletteG** and **LcdPaletteB** translate for green and blue color component, respectively. For 8 bpp pixel data, each color component will be unpacked from one byte, as shown below. For 1, 2, and 4 bpp, color components will not be distinguished and whole pixel data will be translated by each palette register.


bi		bit	bit	bit	bit	bit bit		
7		6	5	4	3	1 0		
Red				Green		Blue		

In the monochrome display mode, LcdPaletteR(LcdPaletteLSP) is used for 8 least significant pixel values and LcdPaletteG(LcdPaletteMSP) for 8 most significant pixel values. It is because maximum 16 palette values are required to translate pixel values in a mono 4 bpp mode. For an example, if a pixel represents 11 in the 4 bpp mode, it will be translated to the value of LcdPaletteMSP[15:12]. For 1 and 2 bpp pixel data, LcdPaletteMSP and a part of LcdPaletteLSP which have no correspondences will be ignored. In the monochrome display mode, LcdPaletteB does nothing.

HMS30C7210 is basically little endian. LCD frame data also follows little endian. However, user can choose the alignment of pixel data in a byte. Figure 9-8 shows display order against the pixel alignment chosen by **LEP**. For 1 and 4 bpp mode, the pixel alignment also follows the same manner as depicted in Figure 9-8.

LCD Display

Frame Memory for LEP = 0 (Big endian pixel order)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Address + 0	Pixel 0		Pixel 1		Pixel 2		Pixel 3	
Address + 1	Pixel 4		Pixel 5		Pix	el 6	Pixe	el 7
Address + 2	Pixe	el 8						

Frame Memory for LEP = 1

(Little	endian	pixel	order)
(P	0.00.7

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Address + 0	Pixel 3		Pixel 2		Pixel 1		Pixel 0	
Address + 1	Pixel 7		Pixel 6		Pixel 5		Pixel 4	
Address + 2		•					Pixe	el 8

Figure 9-8. Pixel Display Order for Big and Little-endian Pixel Alignment in 2-bpp Mode

9.1.7 Other settings

- BLEN, PWREN, LCDEN : Enable sequence
- LcdStatus, LcdStatusM, LcdInterrupt : Interrupt mode

LCD panels require that the LCD controller is running before power is applied. For this reason, the LCD's power on control is not set to "1" unless both LcdEn and PWREN are set to "1". Note that most LCD displays require the LcdEn must be set to "1" approximately 20ms before PWREN is set to "1" for powering up. Likewise, PWREN is set to "0" 20ms before LcdEn is set to "0" for powering down.

To change the value of this register, LCD controller must be disabled. Otherwise, LCD may display improperly. Right after disabling the controller by setting **LcdEn** to "0", however, it may still operate until the end of displaying the current active frame. User has to refer **LDONE** bit in **LcdStatus** register to ensure that LCD controller stops the operation.

The LCD controller status, **LcdStatus**, mask, **LcdStatusM**, and interrupt registers, **LcdInterrupt**, all have the same format. Each bit of the status register is a status bit that may generate an interrupt. The corresponding bits in the mask register mask the interrupt. The interrupt register is the logical AND of the status and mask registers, and the interrupt output from the LCD controller is the logical OR of the bits within the interrupt register.

The LCD controller status register contains bits that signal an under-run error for the FIFO, the DMA next base update ready status, and the DMA done status. Each of these hardware-detected events can generate an interrupt request to the interrupt controller.

9.2 Interrupt Controller

The interrupt controller has the following features

- A status register
- Selection of the output path (IRQ or FIQ for each input)
- Enabling the interrupt

The interrupt controller provides a simple software interface to the interrupt system. In an ARM system, two levels of interrupt are available:

- FIQ (Fast Interrupt Request) for fast, low-latency interrupt handling
- IRQ (Interrupt Request) for more general interrupts

Ideally, in an ARM system, only a single FIQ source would be in use at any particular time. This provides a true low-latency interrupt, because a single source ensures that the interrupt service routine may be executed directly without the need to determine the source of the interrupt. It also reduces the interrupt latency because the extrabanked registers, which are available for FIQ interrupts, may be used to maximum efficiency by preventing the need for a context save.

The interrupt controller provides a bit position for each different interrupt source. Bit positions are defined for a software-programmed interrupt. Any interrupt source can be programmed as a source to FIQ or IRQ interrupt. All interrupt source inputs must be active HIGH and level sensitive. Neither hardware priority scheme nor any form of interrupt vectoring is provided, because these functions can be provided in software. Any interrupt source may be masked.

9.2.1 Registers

Address	Name	Width	Default	Description
0x8005.0000	ENABLE	29	0x0000000	Interrupt Enable Register
0x8005.0004	DIR	29	0x0000000 Interrupt Direction Register	
0x8005.0008	STATUS	29	0x0000000 Interrupt Status Register	
0x8005.000C	-	0	0x000000	Reserved for Test Only : Do not write
0x8005.0010		0	0x000000	Reserved for Test Only : Do not write
0x8005.0020	IRQFIQ	2	0x3	IRQ/FIQ Status Register

Table 9-3. Interrupt Controller Register Summary

9.2.1.1 Enable Register: enable each interrupt source

0x80050000

1030000							
31	30	29	28	27	26	25	24
Reserved			TICK	GPIOB[15]	GPIOB[14]	GPIOE	GPIOD
23	22	21	20	19	18	17	16
GPIOC	GPIOB	GPIOA	KBD	2WSI	RTC	WDT	TIMER3
15	14	13	12	11	10	9	8
TIMER2	TIMER1	TIMER0	SMC	SPI1	SPI0	UART5	UART4
7	6	5	4	3	2	1	0
UART3	UART2	UART1	UART0	ADC	LCD	USB	PMU

Bits Type 0:29 R/W

Function

R/W Each bit of this register enables/disables corresponding interrupt sources.

Bit	Interrupt Name	Description	
28	TICK	RTC TICK	
27	GPIOB[15]	HotSync	
26	GPIOB[14]	To the Deep-sleep	
25	GPIOE	GPIOE	
24	GPIOD	GPIOD	
23	GPIOC	GPIOC	
22	GPIOB	GPIOB	
21	GPIOA	GPIOA	
20	KBD	Keyboard Controller	
19	2WSI	2WSI	
18	RTC	Real Time Clock Controller	
17	WDT	Watch Dog Timer	
16	TIMER3	TIMER3	
15	TIMER2	TIMER2	
14	TIMER1	TIMER1	
13	TIMER0	TIMER0	
12	SMC	SMC	
11	SPI1	SPI1	
10	SPI0	SPIO	
9	UART5	UART5	
8	UART4	UART4	
7	UART3	UART3	
6	UART2	UART2	
5	UART1	UART1	
4	UART0	UART0	
3	ADC	ADC	
2	LCD	LCD Controller	
1	USB	USB Controller	
0	PMU	Power Management Unit	
	ole interrupt (default) ble interrupt		

)x800	50004								
	31 30		30	29	28	27	26	25	24
	Reserved				TICK	GPIOB[15]	GPIOB[14]	GPIOE	GPIOD
	23		22	21	20	19	18	17	16
	GPIOC		GPIOB	GPIOA	KBD	2WSI	RTC	WDT	TIMER3
	15		14	13	12	11	10	9	8
	TIMER	2	TIMER1	TIMER0	SMC	SPI1	SPIO	UART5	UART4
	7		6	5	4	3	2	1	0
	UART3		UART2	UART1	UART0	ADC	LCD	USB	PMU
	Bits	Туре	Function						
	0:29	R/W	Each bit of 0 = IRQ (de	0	ates whether it is I	RQ or FIQ for cor	responding interro	upt sources.	
			1 = FIQ	nauty					

9.2.1.2 Direction Register: interrupt source will trigger nIRQ or nFIQ

9.2.1.3 Status Register: current interrupt request status (read-only)

0x80050008

31	30	29	28	27	26	25	24
Reserved			TICK	GPIOB[15]	GPIOB[14]	GPIOE	GPIOD
23	22	21	20	19	18	17	16
GPIOC	GPIOB	GPIOA	KBD	2WSI	RTC	WDT	TIMER3
15	14	13	12	11	10	9	8
TIMER2	TIMER1	TIMER0	SMC	SPI1	SPI0	UART5	UART4
7	6	5	4	3	2	1	0
UART3	UART2	UART1	UART0	ADC	LCD	USB	PMU

Bits	Туре	Function
0:29	R	Each bit of this register indicates whether IRQ(or FIQ) is generated or not. Masked bit by Enable Register shows always '0'.
		0 = No interrupt request (default) 1 = Interrupt pending

9.2.1.4 IRQFIQ Register: current IRQ/FIQ status (read-only)

050020									
7		6	5	4	3	2	1	0	
Reserv	/ed						IRQ	FIQ	
Bits	Туре	Function	Function						
0:1	R	Bit 1 indica 0 = Reque	tes current s	tatus of nFIQ. tatus of nIRQ.					

9.2.2 Interrupt Control

The interrupt controller provides interrupt request status, interrupt enable and interrupt direction selection registers. The enable register is used to determine whether or not an active interrupt source should generate an interrupt request to the processor. All bits are cleared by system reset.

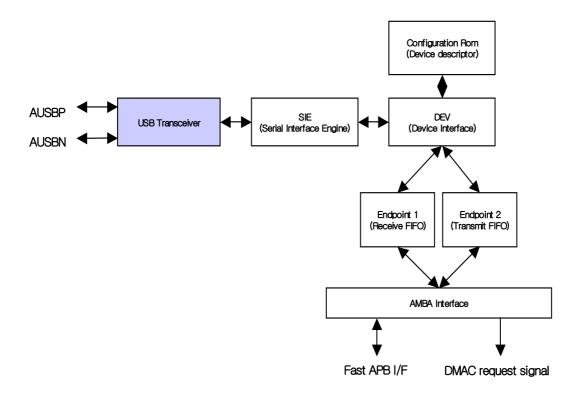
The interrupt request status indicates whether or not the interrupt source is causing a processor interrupt.

The direction register is used to determine which interrupt request is generated to the CPU. If the bit is set, FIQ request is activated. All bits are cleared by system reset. TIC registers are used only for the production test. TIC Input Select Register is used to drive interrupt request sources by CPU. When this register is set, TIC register bits are regarded as interrupt sources. This bit is cleared by system reset and should be cleared in normal operation.

9.3 USB Slave Interface

This section describes the implementation-specific options of USB protocol for a device controller. It is assumed that the user has knowledge of the USB standard. This USB Device Controller (USBD) is chapter 9 (of USB specification) compliant, and supports standard device requests issued by the host. The user should refer to the Universal Serial Bus Specification revision 1.1 for a full understanding of the USB protocol and its operation. (The USB specification 1.1 can be accessed via the World Wide Web at: http://www.usb.org). The USBD is a universal serial bus device controller (slave, not hub or host controller) which supports three endpoints and can operate half-duplex at a baud rate of 12 Mbps. Endpoint 0,by default is only used to communicate control transactions to configure the USBD after it is reset or physically connected to an active USB host or hub. Endpoint 0's responsibilities include connection, address assignment, endpoint configuration and bus numeration.

The connected host that can get a device descriptor stored in USBD's internal ROM via endpoint 0 configures the USBD. The USBD uses two separate 32 x 8 bit FIFO to buffer receiving and transmitting data to/from the host. The CPU can access the USBD using Interrupt controller, by setting the control register appropriately. This section also defines the interface of USBD and CPU.


FEATURES

- Full universal serial bus specification 1.1 compliant.
- Receiver and Transceiver have 32 bytes FIFO individually (this supports maximum data packet size of bulk transfer).
- Internal automatic FIFO control logic. (According to FIFO status, the USBD generates Interrupt service request signals to the CPU)
- Supports high-speed USB transfer (12Mbps).
- There are two endpoints of transmitter and receiver respectively, totally three endpoints including endpoint 0 that has responsibility of the device configuration.
- CPU can access the internal USB configuration ROM storing the device descriptor for Hand-held PC (HPC) by setting the predefined control register bit.
- USB protocol and device enumeration is performed by internal state-machine in the USBD.
- The USBD only supports bulk transfer of 4-transfer type supported by USB for data transfer.
- Endpoint FIFO (Tx, Rx) has the control logic preventing FIFO overrun and under run error.

Note Product ID: 7210 Vendor ID: 05b4 * can be modified

9.3.1 Block Diagram

Figure 9-9. USB Block Diagram

The USB, Figure 9-9. USB Block Diagram comprises the Serial Interface Engine (SIE) and Device Interface (DEV). The SIE connects to the USB through a bus transceiver, and performs NRZI conversion, bit un-stuffing, CRC checking, packet decoding and serial to parallel conversion of the incoming data stream. In outgoing data, it does the reverse, that is, parallel to serial of outgoing data stream and packetizing the data, CRC generation, bit stuffing and NRZI generation.

The DEV provides the interface between the SIE and the device's endpoint FIFO, ROM storing the device descriptor. The DEV handles the USB protocol, interpreting the incoming tokens and packets and collecting and sending the outgoing data packets and handshakes. The endpoints FIFO (RX, TX) give the information of their status (full/ empty) to the AMBA interface and AMBA I/F enable the CPU to access the FIFO's status register and the device descriptor stored in ROM. The AMBA interface generates a FIFO read/write strobe without FIFO's errors, based on APB signal timing. In case of data transmitting through TX FIFO (when USB generates an OUT token, AMBA I/F generates Interrupt to CPU), the user should set the transmitting enable bit in the control register. If the error of FIFO (Rx: overrun, TX: under-run) occurs, the AMBA I/F cannot generate FIFO read/ write.

9.3.2 External Signals

Pin N	lame	Туре	Description				
USBF	0	I/O	USB transceiver signal for P+				
USBN	N	I/O	USB transceiver signal for N+				

Refer to Figure 2-1. 208 Pin diagram.

9.3.3 Registers

Address	Name	Width	Default	Description
0x8005.1000	GCTRL	4	0x0	USB Global Configuration Register
0x8005.1004	EPCTRL	21	0x0	Endpoint Control Register
0x8005.1008	INTMASK	10	0x3ff	Interrupt Mask Register
0x8005.100C	INTSTAT	20	0x0	Interrupt Status Register
0x8005.1018	DEVID	32	0x721005b4	Device ID Register
0x8005.101C	DEVCLASS	32	0xffffff	Device Class Register
0x8005.1020	INTCLASS	32	0xfffff	Interface Class Register
0x8005.1024	SETUP0	32	-	SETUP Device Request Lower Address
0x8005.1028	SETUP1	32	-	SETUP Device Request Upper Address
0x8005.102C	ENDP0RD	32	-	ENDPOINT0 Read Address
0x8005.1030	ENDP0WT	32	-	ENDPOINT0 WRITE Address
0x8005.1034	ENDP1RD	32	-	ENDPOINT1 READ Address
0x8005.1038	ENDP2WT	32	-	ENDPOINT2 WRITE Address

Table 9-4 USB Slave interface Register Summary

9.3.3.1 GCTRL

0x8005.1000

31			4	3	2	1	0
Reserv	ved			TRANSel	WBack	Resume	DMADis
Bits	Туре	Function					
3	R/W	Forced SUSPEND mode setting '1' : Forced SUSPEND enable '0' : Foced SUSPEND disable. And	l. normal ope	ration or normal S	SUSPEND enable	9.	
2	R/W	writeback mode for Interrupt stat '1' : writeback erase enable. '0' : writeback erase disable.					
1	R/W	This Enables Remote Resume Ca cleared to stop resume	pabilities. Wh	nen This Bit Set, U	ISB Drives remo	te resume signali	ng. Should be
0	R	DMA Disable bit. HMS30C7210 do	es not suppo	ort DMA, so value	of this bit (logic '	1) is not changeal	ble

9.3.3.2 EPCTRL

0x8005.1004

31	21	20	19		18	17	16	15	14	13	12
Reserved		CLR2	CLR	1	CLR0	E2TXB		E2SND	E2NK	E2ST	E2En
11	10	9	8	7			4	3	2	1	0
E1RCV	E1NK	E1ST	E1En	E0TX	В			E0NK	E0ST	E0TR	E0En

Bits	Туре	Function
21	R/W	Read Ready Signal control for Endpoint 2
		'1' : read ready signal operation disabled. (always not-ready)
		'0' : read ready signal operation enabled.
20	R/W	Clear Endpoint2 FIFO Pointer(Auto cleared by Hardware).
19	R/W	Clear Endpoint1 FIFO Pointer(Auto cleared by Hardware).
18	R/W	Clear Endpoint0 FIFO Pointer(Auto cleared by Hardware).
17~1	R/W	USB Can Transmit NON Maximum sized Packet. This Field contains the residue byte which should be transmitted.
6		
15	R/W	This Bit enables NON Maximum sized Packet transfer. After NON maximum sized packet transfer, this bit is auto
		cleared and return to Maximum Packet size transfer mode.
14	R/W	When This Bit is Set, and Endpoint2 is not enabled, USB should send NAK Handshake
13	R/W	When This Bit is Set, and Endpoint2 is not enabled, USB should send STALL Handshake
12	R/W	Enable Endpoint2 as IN Endpoint
11	R/W	This bit must be zero. So only maximum packet size RX transfer mode is supported. This means RX (HOST
		OUT) data packet size is fixed to 32 bytes only.
10	R/W	When This Bit is Set, and Endpoint1 is not enabled, USB should send NAK Handshake
9	R/W	When This Bit is Set, and Endpoint1 is not enabled, USB should send STALL Handshake
8	R/W	Enable Endpoint1 as OUT Endpoint
7~4	R/W	This Bit Stores the Byte Count which should be transmitted to HOST when IN token is received (Exception ::
		When This bit is 0, 8 Byte are transferred)
3	R/W	When This Bit is Set, and Endpoint0 is not enabled, USB should send NAK Handshake
3 2	R/W	When This Bit is Set, and Endpoint0 is not enabled, USB should send STALL Handshake
1	R/W	When this Bit1, Endpoint0 is configured to IN endpoint. (others OUT endpoint)
0	R/W	Enable Endpoint0

9.3.3.3 INTMASK

0x8005.1008

0.1000	40	0	0	7	0	5	4	2	0	4	0
31	10	9	8	7	6	5	4	3	2	1	0
Reserv	/ed	E0STL	SUS	RESET	E2EM	E10V	E1FU	E0EM	E00V	E0FU	SET
Bits	Туре	Funct	ion								
9	R/W	Mask	Endpoint0 S	Stall Interrupt							
8	R/W	Mask	SUSPEND	Interrupt							
7	R/W	Mask	USB Cable	RESET Interrup	ot						
6	R/W	Mask	Endpoint2 E	Empty Interrupt							
5	R/W	Mask	Endpoint1 (Overrun Interrup	t (May not b	e used)					
4	R/W	Mask	Endpoint1 F	ull Interrupt							
3	R/W	Mask	Endpoint0 E	Empty Interrupt							
2	R/W	Mask	Endpoint0 (Overrun Interrup	t (May not b	e used)					
1	R/W	Mask	Endpoint0 F	ull Interrupt							
0	R/W	Mask	Endpoint0 S	Setup Token Re	ceived Inter	rupt					

9.3.3.4 INTSTAT

0x8005.100C

00.1000									
31		20	19		14	13			0
Reserved			EP1RXBYTE			EP0RXE	BYTE		
9	8	7	6	5	4	3	2	1	0
E0STL	SUS	RESET	E2EM	E10V	E1FU	E0EM	E00V	E0FU	SET

Bits	Туре	Function
19~1	R/W	Currently Remained Byte In Endpoint1 Receive FIFO which should be read by HOST
4		
13~1	R/W	Currently Remained Byte in Endpoint0 Receive FIFO which should be read by HOST
0		
9	R/W	Endpoint0 Stall Interrupt
8	R/W	SUSPEND Interrupt
7	R/W	USB Cable RESET Interrupt
6	R/W	Endpoint2 Empty Interrupt
5	R/W	Endpoint1 Overrun Interrupt (May not be used)
4	R/W	Endpoint1 Full Interrupt
3	R/W	Endpoint0 Empty Interrupt
2	R/W	Endpoint0 Overrun Interrupt (May not be used)
1	R/W	Endpoint0 Full Interrupt
0	R/W	Endpoint0 Setup Token Received Interrupt

9.3.3.5 DEVID

0x8005.1018

05.1010		
Bits	Туре	Function
31:0	R/W	USB Core Can Change Device ID Field by writing Appropriate Device ID Value to This Register

9.3.3.6 DEVCLASS

0x8005.101C

	0.1010		
_	Bits	Туре	Function
-	23:0	R/W	USB Core Can Change Device Class Field by writing Appropriate Device ID Value to This Register

9.3.3.7 *INTCLASS*

0x8005.1020

Bits	Туре	Function
23:0	R/W	USB Core Can Change Interface Class Field by writing Appropriate Device ID Value to This Register

While USB device configuration process, HOST requests Descriptors. This USB block has a hard-wired descriptor ROM, but there are 3 fields (whole 10 bytes size) user adjustable.

[DEVICE DESCRIPTOR]

* see USB spec. 1.1 (9.6 Standard USB Descriptor Definitions) for more detail

OFFSET (BYTE)	INITIAL VALUE	DESCRIPTION	ADJUSTABLE
h00	h12	length	
h01	h01	DEVICE	
h02	h00	spec version 1.00	
h03	h01	spec version	
h04	hFF	device class	YES
h05	hFF	device sub-class	YES
h06	hFF	vendor specific protocol	YES
h07	h08	max packet size	
h08	hB4	vendor id	YES
h09	h05	vendor id (05b4) for HME	YES
h0a	h02	product id	YES
h0b	h72	product id (7210) for HME7210	YES
h0c	h01	device release #	
h0d	h00	device release #	
h0e	h00	manufacturer index string	
h0f	h00	product index string	
h10	h00	serial number index string	
h11	h01	number of configurations	

* DEVID register has 32-bit width and it covers vendor id to product id (offset from h08 to h0b): DEVID [31:24] - h0b, DEVID [23:16] - h0a, DEVID [15:8] - h09, DEVID [7:0] - h08

* DEVCLASS register has 24-bit width and it covers device class to vendor specific protocol (offset from h04 to h06): DEVCLASS [23:16] – h06, DEVCLASS [15:8] – h05, DEVCLASS [7:0] – h04

[CONFIGURATION DESCRIPTOR]

OFFSET (BYTE)	INITIAL VALUE	DESCRIPTION	ADJUSTABLE
h00	h09	Length of this descriptor	
h01	h02	CONFIGURATION (2)	
h02	h20	Total length includes endpoint descriptors	
h03	h00	Total length high byte	
h04	h01	Number of interfaces	
h05	h01	Configuration value for this one	
h06	h00	Configuration - string	
h07	h80	Attributes - bus powered, no wakeup	
h08	h32	Max power - 100 ma is 50 (32 hex)	
h09	h09	Length of the interface descriptor	
h0a	h04	INTERFACE (4)	
h0b	h00	Zero based index 0f this interface	
h0c	h00	Alternate setting value (?)	
h0d	h02	Number of endpoints (not counting 0)	
h0e	hFF	Interface class, ff is vendor specific	YES
h0f	hFF	Interface sub-class	YES
h10	hFF	Interface protocol	YES
h11	h00	Index to string descriptor for this interface	
h12	h07	Length of this endpoint descriptor	
h13	h05	ENDPOINT (5)	
h14	h01	Endpoint direction (00 is out) and address	
h15	h02	Transfer type – h02 = BULK	
h16	h20	Max packet size - low : 32 byte	
h17	h00	Max packet size – high	
h18	h00	Polling interval in milliseconds (1 for iso)	
h19	h07	Length of this endpoint descriptor	
h1a	h05	ENDPOINT (5)	
h1b	h82	Endpoint direction (80 is in) and address	
h1c	h02	Transfer type – h02 = BULK	
h1d	h20	Max packet size - low : 32 byte	
h1e	h00	Max packet size – high	
h1f	h00	Polling interval in milliseconds (1 for iso)	

* see USB spec. 1.1 (9.6 Standard USB Descriptor Definitions) for more detail * The descriptor has 4 parts : Configuration, Interface, Endpoint1, Endpoint2 (doubled lines)

[STRING DESCRIPTOR]

OFFSET	INITIAL VALUE	DESCRIPTION	ADJUSTABLE
h0	h02	size in bytes	
h1	h03	STRING type (3)	

* This index zero string descriptor means a kind of look up table. As there is no other string descriptor and as there is no further information in this descriptor, USB block does not support strings. (All string index fields are filled with zero)

9.3.3.8 SETUP0 / SETUP1

0x8005.1024 / 0x8005.1028

Bits	Туре	Function
31:0	R/W	USB Core can accept vendor specific protocol command using Endpoint0. This Register contains previously
		received Setup Device Request Value (64-bit Wide, half in each Register)

Below is Request format from HOST when configuration.

[Standard Device Request Format]

bmRequestType	bRequest	wValue	wIndex	wLength
Byte 0	Byte 1		Byte 4 / Byte 5	Byte 6 / Byte 7

When HOST sends request to USB device, this USB block handles a few requests by SIE (Serial Interface Engine).

This is the condition of requests which this USB SIE can handle.

- Request Type must be Standard (b00): see USB spec. 9.3 Table 9-2 'Format of Setup Data' for more detail. Offset 0 (bmRequestType field) D[6:5] (Type) ; 00 – Standard, 01 Class, 10 – Vendor, 11 – reserved.
- Request must be one of these: GET_DESCRIPTOR, SET_ADDRESS, SET_INTERFACE, SET_CONFIGURATION, GET_INTERFACE, GET_CONFIGURATION and GET_STATUS.

So for requests other than above, HMS30C7210 USB sets 9.2.5.4 INTSTAT [0] and it means HOST sent Setup Request that USB SIE cannot handle by itself and these 9.5.5.8 SETUP0 and SETUP1 resister hold Device Request Data (8 bytes : 64 bit described above). This function is to handle standard requests that SIE cannot handle and to handle vendor specific requests.

* Note: 9.2.5.4 INTSTAT [0] bit will not go 'high' in case of Setup request if SIE can handle that request by itself.

9.3.3.9 ENDPORD

0x8005.102C

005.1020		
Bits	Туре	Function
31:0	R/W	Each Endpoint 0 FIFO Read

9.3.3.10 ENDPOWT

0x8005.1030

Bits	Туре	Function
31:0	R/W	Each Endpoint 0 FIFO Write

9.3.3.11 ENDP1RD

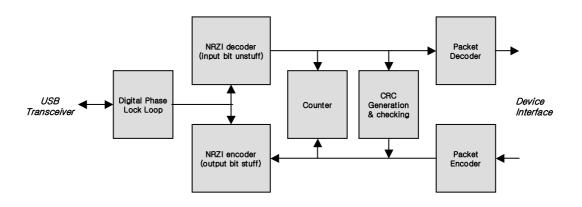
0x8005.1034

Bits	Туре	Function
31:0	R/W	Each Endpoint 1 FIFO Read

9.3.3.12 ENDP2WT

0x8005.1038

000.1000		
Bits	Туре	Function
31:0	R/W	Each Endpoint 2 FIFO Write



9.3.4 Theory of Operation

The MagnaChip USB Core enables a designer to connect virtually any device requiring incoming or outgoing PC data to the Universal Serial Bus. As illustrated in Figure 9-1: USB Block Diagram, the USB core comprises two parts, the SIE and DEV. The SIE connects to the Universal Serial Bus via a bus transceiver. The interface between the SIE and the DEV is a byte-oriented interface that exchanges various types of data packets between two blocks.

Serial Interface Engine

The SIE converts the bit-serial, NRZI encoded and bit-stuffed data stream of the USB into a byte and packet oriented data stream required by the DEV. As shown in Figure 9-2: USB Serial Interface Engine, it comprises seven blocks: Digital Phase Lock Loop, Input NRZI decode and bit-unstuff, Packet Decoder, Packet Encoder, Output bit stuff and NRZI encode, Counters, and the CRC Generation & Checking block. Each of the blocks is described in the following sections.

Figure 9-10. USB Serial Interface Engine

Digital Phase Lock Loop

The Digital Phase Lock Loop module takes the incoming data signals from the USB, synchronizes them to the 48MHz input clock, and then looks for USB data transitions. Based on these transitions, the module creates a divide-by-4 clock called the usbclock. Data is then output from this module synchronous to the usbclock.

Input NRZI decode and bit-unstuff

The Input NRZI decodes and bit-unstuff module extracts the NRZI encoded data from the incoming USB data. Transitions on the input serial stream indicate a 0, while no transition indicates a 1. Six ones in a row cause the transmitter to insert a 0 to force a transition, therefore any detected zero bit that occurs after six ones is thrown out.

Packet Decoder

The Packet Decoder module receives incoming data bits and decodes them to detect packet information. It checks that the PID (Packet ID) is valid and was sent without error.

After decoding the PID, the remainder of the packet is split into the address, endpoint, and CRC5 fields, if present. The CRC Checker is notified to verify the data using the incoming CRC5 field. If the packet is a data packet, the data is collected into bytes and passed on with an associated valid bit. Table 9-1: Supported PID Types shows the PID Types that are decoded (marked as either Receive or Both). At the end of the packet, either the packetok or packetnotok signal is asserted. Packetnotok is asserted if any error condition arose (bad valid bit, bit-stuff, bad PID, wrong length of a field, CRC error, etc.).

PID Type	Value	Send/Receive	PID Type	Value	Send/Receive
OUT	4'b0001	Receive	DATA1	4'b1011	Both
IN	4'b1001	Receive	ACK	4'b0010	Both
SOF	4'b1101	Receive	NAK	4'b1010	Send
SETUP	4'b0000	Receive	STALL	4'b1110	Send
DATA0	4'b0011	Both	PRE	4'b1100	Receive

Table 9-5. USB Supported PID Types

Packet Encoder

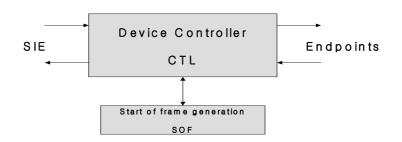
The Packet Encoder creates outgoing packets based on signals from the DEV. Table 9-1: Supported PID Types shows the PID Types that can be encoded (marked as Send or Both). For each packet type, if the associated signal sends type is received from the DEV, the packet is created and sent. Upon completion of the packet, packettypesent is asserted to inform the DEV of the successful transmission. The Packet Encoder creates the outgoing PID, grabs the data from the DEV a byte at a time, signals the CRC Generator to create the CRC16 across the data field, and then sends the CRC16 data. The serial bits are sent to the Output bit stuff and NRZI encoder.

Output bit stuff and NRZI encoder

The Output bit stuff and NRZI encoder takes the outgoing serial stream from the Packet Encoder, inserts stuff bits (a zero is inserted after six consecutive ones), and then encodes the data using the NRZI encoding scheme (zeroes cause a transition, ones leave the output unchanged).

Counter block

The Counter block tracks the incoming data stream in order to detect the following conditions: reset, suspend, and turnaround. It also signals to the transmit logic (Output NRZI and bit stuff) when the bus is idle so transmission can begin.


Generation and Checking block

The Generation and Checking block checks incoming CRC5 and CRC16 data fields, and generates CRC16 across outgoing data fields. It uses the CRC polynomial and remainder specified in the USB Specification Version 1.1.

Device Interface

The DEV shown in Figure 9-3: Device Interface works at the packet and byte level to connect a number of endpoints to the SIE. It understands the USB protocol for incoming and outgoing packets, so it knows when to grab data and how to correctly respond to incoming packets. A large portion of the DEV is devoted to the setup, configuration, and control features of the USB. As shown in Figure 9-3: Device Interface the DEV is divided into three blocks: Device Controller, Device ROM, and Start of Frame. The three blocks are described in the following sections.

Figure 9-1 USB Device Interface Device Controller

Device Controller

The Device Controller contains a state machine that understands the USB protocol. The (SIE) provides the Device Controller with the type of packet, address value, endpoint value, and data stream for each incoming packet. The Device Controller then checks to see if the packet is targeted to the device by comparing the address/endpoint values with internal registers that were loaded with address and endpoint values during the USB enumeration process. Assuming the address/endpoint is a match, the Device Controller then interprets the packet. Data is passed on to the endpoint for all packets except SETUP packets, which are handled specially. Data toggle bits (DATA0 and DATA1 as defined by the USB spec) are maintained by the Device Controller. For IN data packets (device to host) the Device Controller sends either the maximum number of bytes in a packet or the number of bytes available from the endpoint. All packets are acknowledged as per the spec. For SETUP packets, the incoming data is extracted into the relevant internal fields, and then the appropriate action is carried out. Table 9-2: Supported Setup Requests lists the types of setup operations that are supported.

Setup Request	Value	Supported	Setup Request	Value	Supported
Get Status	0	Device, Interface, Endpoint	Get Configuration	8	Device
Clear Feature	1	Not supported	Set Configuration	9	Device
Set Feature	3	Not supported	Get Interface	10	Device
Set Address	5	Device	Set Interface	11	Device
Get Descriptor	6	Device	Synch Frame	12	Not supported
Set Descriptor	7	Not supported			

Table 9-6 USB Supported Setup Requests

Start of Frame

The Start of Frame logic generates a pulse whenever either the incoming Start of Frame (SOF) packet arrives or approximately 1 ms after it the last one arrived. This allows an isochronous endpoint to stay in sync even if the SOF packet has been

garbled.

9.3.5 Endpoint FIFOs (Rx, Tx)

Each endpoint FIFO has the specific number of FIFO depth according to data transfer rate. In case of maximum packet size for bulk transfer is 32 bytes that is supported in USBD. Each FIFO generates data ready signals (means FIFO not full or FIFO not empty) to AMBA IF. It contains the control logic for transferring 4 bytes at a read/write strobe generated by AMBA to obtain better efficiency of AMBA bus.

9.4 ADC Interface Controller

HMS30C7210 has internal ADC and ADC interface logic for analog applications of touch panel interface and general purpose. If user doesn't need these applications or want to use for other functions, there's a direct ADC control register available.

All channels can be used for general purpose application. ADC operating clock is "ACLK" called as "PCLK" in AMBA Peripherals. ADC sampling clock is "OCLK". It is about 8KHz.

FEATURES

- 3-channel 10-bit ADC.
- 8-sample data per one sampling point of touch panel (channel 0,1)
- 4-sample data per one sampling point of general purpose channel(channel 2)
- Manual and Auto ADC power down mode
- ADC input range : ADCVSS ~ ADCVREF
- Conversion time : 4.33usec (@ 3.6923MHz))

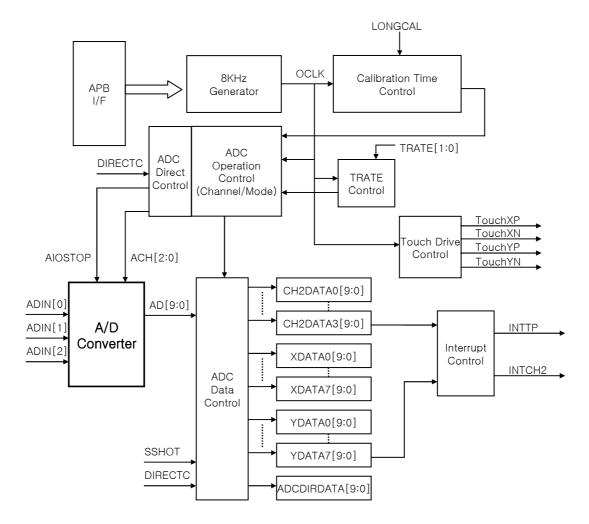


Figure 9-11. Block diagram of ADC, ADC I/F

9.4.1 External Signals

Pin Name*	Type**	Description	
ADIN[0]	AI	ADC input. Touch Panel X-axis signal input or general purpose input	
ADIN[1]	AI	ADC input. Touch Panel Y-axis signal input or general purpose input	
ADIN[2]	AI	ADC input. CH2 value input.	
ADCVDD	Р	ADC analog VDD	
ADCVSS	Р	ADC analog VSS	
ADCVREF	AI	ADC Reference voltage.	
TouchXP	0	Touch screen switch X-positive drive	
TouchXN	0	Touch screen switch X-negative drive	
TouchYP	0	Touch screen switch Y-positive drive	
TouchYN	0	Touch screen switch Y-negative drive	

Refer to Figure 2-1. 208 Pin diagram.

9.4.2 Registers

Address	Name	Width	Default	Description
0x8005.3000	ADCCR	8	0x80	ADC Control Register
0x8005.3004	ADCTPCR	8	0x0	Touch panel Control register
0x8005.3008	ADCBACR	8	0x0	CH2 Control Register
0x8005.3010	ADCISR	8	0x0	ADC Interrupt Status Register
0x8005.3020	ADCDIRCR	8	0x0	ADC Direct Control Register
0x8005.3024	ADCDIRDATA	10	0x0	ADC Direct Data read register
0x8005.3030	ADCTPXDR0	32	0x0	Touch Panel X Data register 0
0x8005.3034	ADCTPXDR1	32	0x0	Touch Panel X Data register 1
0x8005.3038	ADCTPYDR0	32	0x0	Touch Panel Y Data register 0
0x8005.303C	ADCTPYDR1	32	0x0	Touch Panel Y Data register 1
0x8005.3040	ADCTPXDR2	32	0x0	Touch Panel X Data register 2
0x8005.3044	ADCTPXDR3	32	0x0	Touch Panel X Data register 3
0x8005.3048	ADCTPYDR2	32	0x0	Touch Panel Y Data register 2
0x8005.304C	ADCTPYDR3	32	0x0	Touch Panel Y Data register 3
0x8005.3050	ADCMBDATA0	32	0x0	CH2 Data Register0
0x8005.3054	ADCMBDATA1	32	0x0	CH2 Data Register1

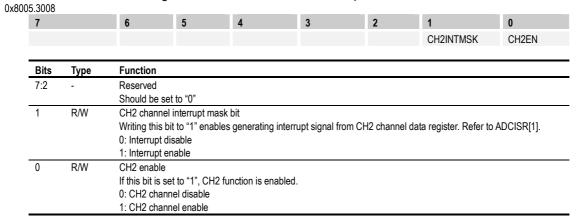
Table 9-7. ADC Controller Register Summary

9.4.2.1 ADC Control Register (ADCCR)

0x8005.3000

7		6	5	4	3	2	1	0
ADCPD		DIRECTC			WAIT[3:2]		SOP	LONGCAL
Bits	Туре	Function	ı					
7	R/W	User can This bit b writing th 0: norma	locks the cloc is bit to "0", Al	k to ADC and AD	sumption by ADC. C I/F, so they consum Ims calibration time to			o "1". But after
6	R/W	ADC Dire DIRECTO signals a If this bit ADCDIRI 0: No dire	ect access cor C bit can be u re describe in is set to "1", C	sed for direct accor ADCDIRCR regis CPU directly acces In this mode, AD ode	ess from CPU to ADC ster field. ss ADC through ADCI CCR register except /	DIRCR and dire	ectly read ADC res	ult value through
5:4	-	Reserved	d					
		unstable period. "2 WAIT[1 00 01 10 11	value from AE 2, 4 clock wait :0] w N 2 4 R	DC. "No Wait" info	ADC I/F logic becaus rms that ADC data loa C data loading clock p A period of load Equal to a perio More 2cycles of More 4cycles of Reserved CLK	ading clock pe period is longer ing data clock d of ADC conv ACLK	riod is equal to AD r than ADC convers	C conversion clock
1	R/W	Self Operating Power down bit It means that power down mode of ADC –not ADC I/F- is controlled by TPEN and CH2EN in addition to A SOP bit can be used for one-shot operation to save power. When this bit is set to "1" and all ADC functio enabled, so ADC goes to power down mode. 0: No SOP mode 1: SOP mode						
0	R/W	Long cali LONGCA	bration time. AL selects self t a couple of c "1".		Initially this bit is set to alue, user should sele	ect long calibra	ation time (about 4	8 ms) by writing this

9.4.2.2 ADC Touch Panel Control Register (ADCTPCR)


0x8005.3004

7		6	5	4	3	2	1	0
TPEN		TINTMSK		SWINVT		SSHOT	TRATE[1:0]
Bits	Туре	Function						
7	R/W	Touch pan If this bit is 0: Touch p 1: Touch p	s set to "1" anel read	, Touch panel functio disable	n is enabled.			
6	R/W	Touch pan	el read int s bit to "1" t disable	errupt mask bit. enables generating o	of interrupt sigr	nal from Touch pane	el data receiver.	Refer to ADCISR[2]
5	-	Reserved						
4	R/W	TouchXM Also while opposite to Writing this	and Touch Touch par TouchXM s bit to "1" lel X mode rsion	gnal inversion bit for i YM output initial valu nel Y mode in progre I and TouchYM respe inverts the above. Fo in progress, TouchX	e is "0". While ss, TouchYM v ectively. or example, To	alue is "1". Always	TouchXP and To	uchYP output value
3	-	Reserved						
2	R/W	Normally, t per 4-sam 0: data rea	touch pane ple and sa ad twice. To	ead operation. el data read twice pel ving power to read to buch panel data is lo buch panel data is lo	ouch panel. aded into 1st a	nd 2nd Touch Pane	el data registers.	-
1:0	R/W	•		mpling rate. of ADC interface.				
					descripti	on		
		TRATE[1:0]	samples / sec	uescripti			
		00		50 samples / sec	One san	nple per 160 cycles		
		00 01		50 samples / sec 100 samples / sec	One san One san	nple per 160 cycles nple per 80 cycles o	of OCLK	
		00		50 samples / sec	One san One san One san	nple per 160 cycles	of OCLK of OCLK	

9.4.2.3 ADC CH2 Control Register (ADCCH2CR)

This register controls CH2 channel check operation.

9.4.2.4 ADC Interrupt Status Register (ADCISR)

0x8005.3010 6 5 4 3 0 7 2 1 TP_INT CH2_INT Bits Function Туре 7:3 Reserved 2 R Touch panel data interrupt flag. Interrupt signal is generated at the end of CH2_MODE after 4-sampling. Read only valid and writing this bit to "1" clear this flag. 0: Interrupt was not generated or was cleared. 1: Interrupt was generated. 1 R CH2 channel interrupt flag. Interrupt signal is generated at the end of TPY_MODE after 4-samling or 8-samlping. If SSHOT is set to "0", TP_INT is generated at the end of 2nd TPY_MODE after 8-sampling of TPX and TPY respectively. But if SSHOT is set to "1", TP_INT is generated at the end of 1st TPY_MODE after 4-sampling of TPX and TPY respectively. Read only valid and writing this bit to "1" clear this flag. 0: Interrupt was not generated or was cleared 1: Interrupt was generated. 0 Reserved

9.4.2.5 ADC Direct Control Register (ADCDIRCR)

0x8005.3020

7		6	5	4	3	2	1	0			
DIR_A	IOSTOP	DIR_ACH[2:0]									
Bits	Туре	Function									
7	R/W	Direct AIOSTOP When DIRECTC(ADCCR[6]) bit is set to "1", ADC power down mode is controlled by DIR_AIOSTOP, not ADCPD(ADCCR[7]). But if DIRECTC bit is "0", DIR_AIOSTOP doesn't affected to ADC power down mode. 0: normal mode in the direct access mode 1: power down mode in the direct access mode									
6:3	-	Reserved Should be set	to "0"								
2:0	R/W	Direct ADC ch When DIREC DIR_ACH[2: 001 010 100	TC(ADCCR[6])	el 0 to el 1 to	C channel is co lescription buch panel X buch panel Y jeneral purpose		_ACH.				

9.4.2.6 ADC Direct Data Read Register (ADCDIRDATA)

Register can be used to read data from ADC.

0x8005.3024

9	8	7	6	5	4	3	2	1	0
DIR_A	D[9:0]								
Bits	Туре	Function							
9:0	R	10-bit AD conve	rsion data						

9.4.2.7 ADC 1ST Touch Panel Data register

0x8005.3030 – 0x8005.303C		• •	••	••	•	••				10
	25	24	23	22	21	20	19	18	17	16
			-				DR1[25:1 DR1[25:1	-		
	9	8	7	6	5	4	3	2	1	0
	XDATA0: ADCTPXDR0[9:0], XDATA2: ADCTPXDR1[9:0] YDATA0: ADCTPYDR0[9:0], YDATA2: ADCTPYDR1[9:0]									

ADCTPXDR0: 0x8005.3030

Bit	s Typ	pe Function
31:	26 -	Reserved
25:	:16 R	Touch panel X data 10-bit, 2/4 of the first sample cycle (XDATA1)
15:	:10 -	Reserved
9:0) R	Touch panel X data 10-bit, 1/4 of the first sample cycle (XDATA0)

ADCTPXDR1: 0x8005.3034

Bits	Туре	Function
31:26	-	Reserved
25:16	R	Touch panel X data 10-bit, 4/4 of the first sample cycle (XDATA3)
15:10	-	Reserved
9:0	R	Touch panel X data 10-bit, 3/4 of the first sample cycle (XDATA2)

ADCTPYDR0: 0x8005.3038

Bits	Туре	Function
31:26	-	Reserved
25:16	R	Touch panel Y data 10-bit, 2/4 of the first sample cycle (YDATA1)
15:10	-	Reserved
9:0	R	Touch panel Y data 10-bit, 1/4 of the first sample cycle (YDATA0)

ADCTPYDR1: 0x8005.303C

Bits	Туре	Function
31:26	-	Reserved
25:16	R	Touch panel Y data 10-bit, 4/4 of the first sample cycle (YDATA3)
15:10	-	Reserved
9:0	R	Touch panel Y data 10-bit, 3/4 of the first sample cycle (YDATA2)

9.4.2.8 ADC 2ND Touch Panel Data Register

0x8005.3040 – 0x8005.304C	25	24	23	22	21	20	19	18	17	16
	XDATA5 YDATA5		•				-	-		
	9	8	7	6	5	4	3	2	1	0
	XDATA5 YDATA5					CTPXDR CTPYDR				

ADCTPXDR2: 0x8005.3040

	0,00000	
Bits	Туре	Function
31:26	-	Reserved
25:16	R	Touch panel X data 10-bit, 2/4 of the second sample cycle (XDATA5)
15:10	-	Reserved
9:0	R	Touch panel X data 10-bit, 1/4 of the second sample cycle (XDATA4)

ADCTPXDR3: 0x8005.3044

Bits	Туре	Function
31:26	-	Reserved
25:16	R	Touch panel X data 10-bit, 4/4 of the second sample cycle (XDATA7)
15:10	-	Reserved
9:0	R	Touch panel X data 10-bit, 3/4 of the second sample cycle (XDATA6)

ADCTPYDR2: 0x8005.3038

Bits	Туре	Function
31:26	-	Reserved
25:16	R	Touch panel Y data 10-bit, 2/4 of the second sample cycle (YDATA5)
15:10	-	Reserved
9:0	R	Touch panel Y data 10-bit, 1/4 of the second sample cycle (YDATA4)

ADCTPYDR3: 0x8005.303C

Bits	Туре	Function
31:26	-	Reserved
25:16	R	Touch panel Y data 10-bit, 4/4 of the second sample cycle (YDATA7)
15:10	-	Reserved
9:0	R	Touch panel Y data 10-bit, 3/4 of the second sample cycle (YDATA6)

9.4.2.9 ADC CH2 Data Register (ADCCH2DATA)

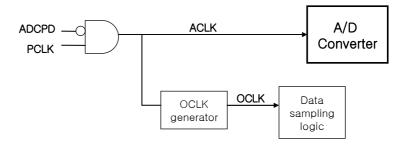
0x8005.3	050 -	0x8005	3054
0.0000.0	000 -	0,0000	.0004

0003.3030	- UXOUUD	0.3034														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
						CH2D	ATA1: A	DCCH2D	ATA0, CH	H2DATA3	: ADCCH	H2DATA1				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
						CH2D	ATA0: A	DCCH2D	ATA0, CH	H2DATA2	2: ADCCH	H2DATA1				

ADCMBDATA0: 0x8005.3050

Bits	Туре	Function
31:26	-	Reserved
25:16	R	CH2 channel data 10-bit, 2/4 of the CH2 sample cycle (CH2DATA1)
15:10	-	Reserved
9:0	R	CH2 channel data 10-bit, 1/4 of the CH2 sample cycle (CH2DATA0)

ADCMBDATA1: 0x8005.3054


Bits	Туре	Function
31:26	-	Reserved
25:16	R	CH2 channel data 10-bit, 4/4 of the CH2 sample cycle (CH2DATA3)
15:10	-	Reserved
9:0	R	CH2 channel data 10-bit, 3/4 of the CH2 sample cycle (CH2DATA2)

9.4.3 Operation

9.4.3.1 Clock & power down mode

The clock source of ADC is the peripheral clock PCLK. This is called the ACLK and is controlled by the ADCPD bit in ADCCR register. Writing "0" to the ADCPD bit is that the PCLK is connected to ACLK. On the contrary, writing "1" to this bit means that ADC mode is power down mode. In this mode, the ACLK is always "0". The data sampling clock of ADC Interface controller is the OCLK. This clock has a frequency of $F_{PCLK}/461$.

Figure 9-12. ADC Clock & Data sampling clock

9.4.3.2 *Operating stop condition & power down mode*

The ADC can go to power down mode by blocking ACLK and controlling AlOSTOP. The AlOSTOP is an enable signal of the ADC. When this signal is low, the ADC starts normal operation. By writing to "0" to the ADCPD bit, AlOSTOP is set to "0". But if the SOP bit in ADCCR register, the TPEN in ADCTPCR register or CH2EN in ADCCH2CR register should be set to "1" in addition to the ADCPD low.

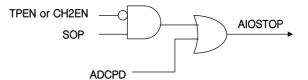


Figure 9-13. ADC operating stop condition

9.4.3.3 *Calibration time*

The ADC needs calibration time for ADC conversion start. The calibration time for the ADC is about 10msec. When the LONGCAL in ADCCR register is low, the calibration time is about 12msec. If the first a couple of data were wrong value, the ADC is not stable yet. In this case, user should set "1" to the LONGCAL bit. Long calibration time is about 48msec.

9.4.3.4 Data sampling & loading time

The data sampling frequency of the ADCIF is OCLK. ADC data is loaded into ADCTPXDR, ADCTPYDR, ADCCH2DR registers four times per one period of OCLK. When OCLK is high, data loading is started after 90 cycles of ACLK. The conversion clock of the ADC is $F_{ACLK}/16$. User can select data loading cycle. The WAIT bits in ADCCR register determine a period of loading data. When the WAIT bits are '0', a period of loading data is equal to a period of ADC conversion clock. When the WAIT bits are '1' or '2', a period of it is more 2 or 4 cycles of ACLK.

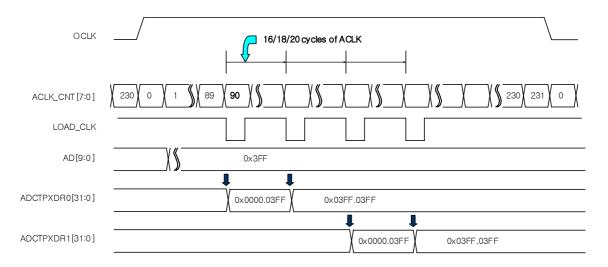


Figure 9-14. Data loading timing

9.4.3.5 Data sampling sequence

One sampling cycle is consisted of OCLK 20 cycles.

Mode, Channel operation

Normally mode & channel of CH2 are generated once per sampling cycle. Mode & channel of touch panel are generated twice per sampling cycle. But in this case, touch panel is dependent on SSHOT or TRATE.

SSHOT operation

Normally touch panel data register is loaded twice. So touch panel data is loaded into 1st and 2nd Touch Panel data registers. If the SSHOT bit in ADCTPCR register is set high, touch panel data register is loaded just once for a point and saving power to read touch panel. So touch panel data is loaded into just 1st Touch Panel data register.

TRATE [1:0] operation

These bits are in ADCTPCR register. If the TRATE bits are 2'b11, Touch Panel data registers are updated every sampling cycle. If the TRATE bits are 2'b10, Touch Panel data registers are updated once per 2 sampling cycles. If the TRATE bits are 2'b01, Touch Panel data registers are updated once per 4 sampling cycles. If the TRATE bits are 2'b10, Touch Panel data registers are updated once per 4 sampling cycles. If the TRATE bits are 2'b10, Touch Panel data registers are updated once per 4 sampling cycles.

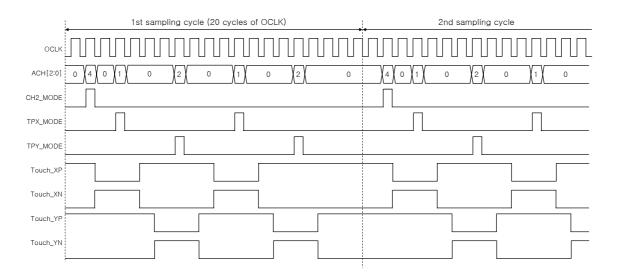


Figure 9-15. Data sampling sequence - TRATE is 2'b11 / SSHOT is 1'b0 / SWINVT is 1'b0

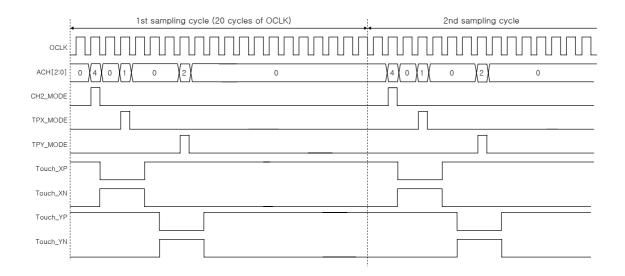


Figure 9-16. Data sampling sequence - TRATE is 2'b11 / SSHOT is 1'b1 / SWINVT is 1'b0

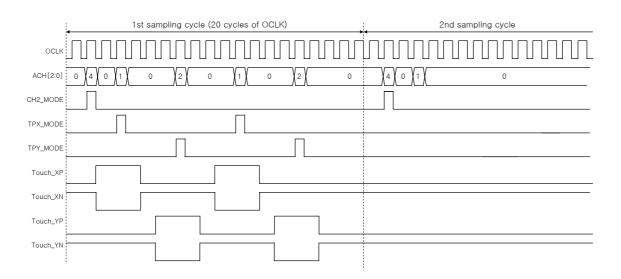


Figure 9-17. Data sampling sequence – TRATE is 2'b10 / SSHOT is 1'b0 / SWINVT is 1'b1

9.4.3.6 Interrupt control

Interrupt signal is generated at the end of CH2_MODE, TPY_MODE.

For generating interrupt signal, the TINTMSK bit in ADCTPCR register and the CH2INTMSK bit in ADCCH2CR register are set high. If the SSHOT bit in ADCTPCR register is low, TP_INT is generated at the end of 2nd TPY_MODE. As soon as ADC 2nd Touch Panel Data Registers is updated, TP_INT is generated. But if the SSHOT bit in ADCTPCR register is high, TP_INT is generated at the end of 1st TPY_MODE. As soon as ADC 1st Touch Panel Data Registers is updated, TP_INT is generated. In case of CH2_MODE, CH2_INT is always generated at the end MB_MODE.

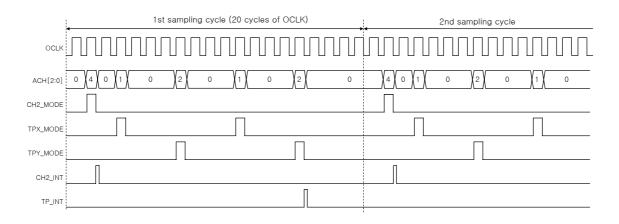


Figure 9-18. Interrupt generating timing – TRATE is 2'b11 / SSHOT is 1'b0

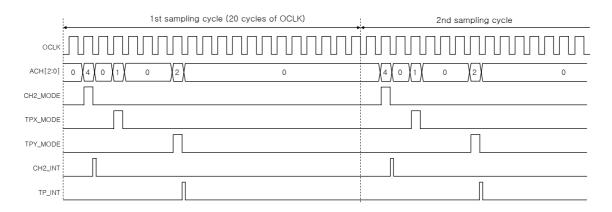


Figure 9-19. Interrupt generating timing – TRATE is 2'b11 / SSHOT is 1'b1

9.4.3.7 Direct access mode

The CPU can directly access the ADC. When the DIRECTC bit in ADCCR register is high, the direct control logic is enabled and the ADC is directly connected by using ADCDIRCR register. ADC conversion data is loaded into ADCDIRDATA register. The ADCPD bit in ADCCR register should be set low to start this mode.

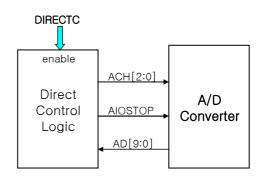


Figure 9-20. ADC direct access mode

9.4.3.8 *Operation setup flow*

Touch panel mode

- Select SWINTV, SSHOT, TRATE[1:0] in ADCTPCR register.
- Set TPEN, TINTMSK in ADCTPCR register.
- Select WAIT[3:2], SOP, LONGCAL in ADCCR register.
- Set ADCPD to low in ADCCR register for starting.
- Check TP_INT in ADCISR register.

CH2 mode

- Set CH2EN, CH2INTMSK in ADCCH2CR register.
- Select WAIT[3:2], SOP, LONGCAL in ADCCR register.
- Set ADCPD to low in ADCCR register for starting.
- Check CH2_INT in ADCISR register.

Direct access mode

- Set DIRECTC in ADCCR register.
- Select DIR_ACH[2:0] in ADCDIRCR register.
- Set DIR_AIOSTOP to low in ADCDIRCR register.
- Set ADCPD to low in ADCCR register for starting.
- Check DIR_AD[9:0] in ADCDIRDATA register

9.4.3.9 About Touch Panel board setup

ADCTPCR register control functions related with touch panel interface. HMS30C7210 supports only external drive for touch panel (TouchXP/TouchXN/TouchYP/TouchYN), so prudent setting of this register is needed. For more information about touch panel setup, refer to "HMS30C7210 H/W Reference Development Kit Reference board ver0.1" in www.magnachip.com web site.

9.4.4 A/D Converter

H35AD33S is a CMOS(0.35/an, 1-poly, 3-metal) 10-bit successive approximation A/D Converter which has high speed, low power consumption. The ADC has multiplexed 8 input channels. The serial output is configured to interface with standard shift registers. The differential analog voltage input allows for common-mode rejection or offset of the analog zero input voltage value. The voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 10 bits of resolution

FEATURES

- Power supply: 3.3v
- Resolution: 10 bits
- Signal-to-noise ratio (SNR): 54dB
- 3 channels
- Conversion speed: 230KHz (@ 3.6923Mhz)
- Main clock: 3.6923 MHz
- Power-down mode
- Analog input range: AVSS~ avref
- Cell Size: 1000 µm x 1000 µm

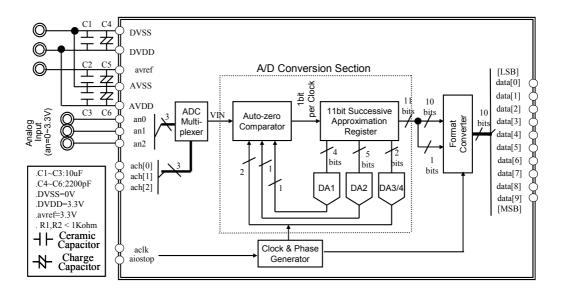


Figure 9-21. Block diagram of A/D Converter

9.4.4.1 Functional description

This SAR-type ADC contains a SAR register, an auto-zero comparator, three internal DAC, MUX(3x1), a format converter, a clock & phase generator, and a reference ladder & calibrator. The conversion rate ranges up to 1MHz. These blocks contained in ADC can be described as follows:

SAR register

This block is a successive approximation register which latches the output of comparator and generates the input of the internal DAC.

Auto-zero comparator

This comparator is able to reduce the offset error periodically and senses the difference between analog input and DAC output.

Internal DAC

These DAC generate analog reference voltage according to SAR register output.

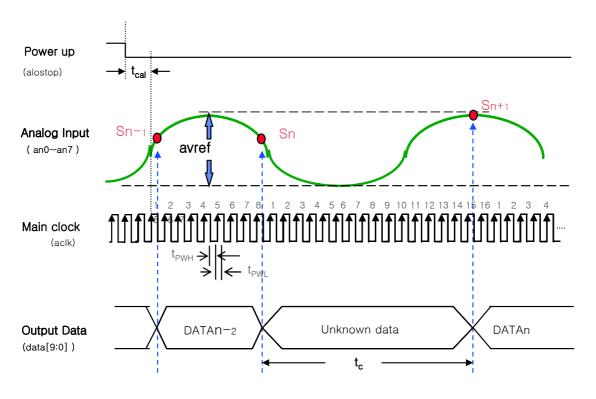
Multiplexer

One of the eight channel can be selected by the control pins (ach[0] ~ ach[2])

Format converter

This format converter is to latch the 11-bit SAR output data stream and convert it to a standard 10-bit binary format.

Clock & Phase generator


The outputs generated in clock & phase generator control SAR-type ADC conversion operation.

Reference ladder & calibration

This reference ladder generates the analog reference voltage used by the internal DAC. The reference ladder taps are adjusted by using an auto-calibration technique.

9.4.4.2 Timing diagram

ADC starts data conversion after calibration time.

Figure 9-22. Timing diagram of A/D Converter

9.4.4.3 *Electrical characteristics*

Refer to 'chapter 11.3 A/D Converter Electrical Characteristics'

9.5 UART/SIR

UART (Universal Asynchronous Receiver/Transmitter) of HMS30C7210 is functionally identical to the 16C550. On power-up, UART is set to CHARACTER mode(Non-FIFO Mode) and has a single Tx/Rx buffer. This UART can be put into an alternate mode (FIFO mode) to relieve the CPU of excessive software overhead. In the FIFO mode internal FIFOs are activated - RECEIVE FIFO (16 bytes plus 3 bit of error data per byte) stores the received data and the error information of individual received data and TRANSMIT FIFO(16 Bytes) stores the data to be trainsmitted. All the logic is on the chip to minimize the system overhead and to maximize efficiency.

The UART performs serial-to-parallel conversion on data characters received from a peripheral device or a MODEM, and parallel-to-serial conversion on data characters received from the CPU. The CPU can read the complete status of the UART at any time during the functional operation. Status information reported includes the type and condition of the transfer operations being performed by the UART, as well as any error conditions (parity, overrun, framing, or break interrupt).

The UART includes a programmable baud rate generator capable of dividing the timing reference clock input by divisors of 1 to 2^{16} -1, and producing a 16x clock for driving the internal transmitter logic. Provisions are also included to use this 16x clock to drive the receiver logic.

The UART has complete MODEM-control capability, and a processor-interrupt system. Interrupts can be programmed to the user's requirements, minimizing the computing required to handle the communications link.

FEATURES

- Capable of running all existing 16C550 software (Except UART0, UART1).
- After reset, all registers are identical to the 16C550 register set. (Except UART0, UART1).
- The FIFO mode transmitter and receiver are each buffered with 16 byte FIFOs to reduce the number of interrupts presented to the CPU.
- Add or delete standard asynchronous communication bits (start, stop and parity) to or from the serial data.
- Holding and shift registers in the 16C450 mode eliminate the need for precise synchronization between the CPU and serial data.
- Independently controlled transmit, receive, line status and data set interrupts.
- Programmable baud generator divides any input clock by 1 to 65535 and generates 16x clock
- Independent receiver clock input.
- MODEM control functions (CTS, RTS, DSR, DTR, RI and DCD) (UART5 Only).
- Fully programmable serial-interface characteristics:
- 5-, 6-, 7- or 8-bit characters
- Even, odd or no-parity bit generation and detection
- 1-, 1.5- or 2-stop bit generation and detection
- Baud generation (DC to 230k baud)
- False start bit detection.
- Complete status-reporting capabilities.
- Line breaks generation and detection.
- Internal diagnostic capabilities:
- Loopback controls for communications link fault isolation
- Full prioritized interrupt system controls.

9.5.1 External Signals

These uart pin names are same as HMS30C7210 Top pin names.

To get the information about pin number of UART signal at Chip, refer to "Table 2-3 Detail Pin Description".

Pin Name	Туре	Description
SCRST [0]	Ι	UART 0 serial data inputs. Serial data input from the communications link (peripheral device, MODEM or data set).
SCIO [0]	0	UART 0 serial data outputs. Composite serial data output to the communications link (peripheral, MODEM or data set). The USOUT signal is set to the Marking (logic 1) state upon a Master Reset operation.
SCRST [1]	I	UART 1 serial data inputs
SCIO [1]	0	UART 1 serial data outputs
UART2Rx	I	UART 2 serial data inputs
UART2Tx	0	UART 2 serial data outputs
UART3Rx	I	UART 3 serial data inputs
UART3Tx	0	UART 3 serial data outputs
IrDA4Rx		UART 4 serial data inputs
IrDA4Tx	0	UART 4 serial data outputs
UART5Rx	1	UART 5 serial data inputs
UART5Tx	0	UART 5 serial data outputs
nURING	<u> </u>	UART 5 ring input signal (wake-up signal to PMU).
		When LOW, this indicates that the MODEM or data set has received a telephone ring signal. The nURING signal is a MODEM status input whose condition can be tested by the CPU reading bit 6 (RI) of the MODEM Status Register. Bit 6 is the complement of the nURING signal. Bit 2 (TERI) of the MODEM Status Register indicates whether the nURING input signal has changed from a LOW to a HIGH state since the previous reading of the MODEM Status Register.
nUDTR	0	UART 5 data terminal ready. When LOW, this informs the MODEM or data set that the UART is ready to establish communication link. The nUDTR output signal can be set to an active LOW by programming bit 0 (DTR) of the MODEI Control Register to HIGH level.
nUCTS	I	UART 5 clear to send input. When LOW, this indicates that the MODEM or data set is ready to exchange data. The nUCTS signal is a MODEM status input whose conditions can be tested by the CPU reading bit 4 (CTS) of the MODEM Status Register. Bit 4 is the complement of the nURING signal. Bit0 (DCTS) indicates whether the nUCTS input has changed state since the previous reading of the MODEM Status Register. nUCTS has no effect on the Transmitter.
nURTS	0	UART 5 request to send. When LOW, this informs the MODEM or data set that the UART is ready to exchange data. The nURTS output signal can be set to an active LOW by programming bit 1 (RTS) of the MODEN Control Register.
nUDSR	I	UART 5 data set ready input. When LOW, this indicates that the MODEM or data set is ready to establish the communications link with the UART. The nUDSR signal is a MODEM status input whose conditions can be tested by the CPU reading bit 5 (DSR) of the MODEM Status Register. Bit 5 is the complement of the nUDSR signal. Bit 1(DDSR) of MODEM Status Register indicates whether the nUDSR input has changed state since the previous reading of the MODEM status register.
nUDCD	I	UART 5 data carrier detect input. When LOW, indicates that the data carrier has been detected by the MODEM data set. The signal is a MODEM status input whose condition can be tested by the CPU reading bit 7 (DCD) of the MODEM Status Register. Bit 7 is the complement of the signal. Bit 3 (DDCD) of the MODEM Status Register indicates whether the input has changed state since the previous reading of the MODEM Status Register. nUDCD has no effect on the receiver.

Refer to Figure 2-1. 208 Pin diagram.

9.5.2 Registers

Address	Name	Width	Default	Description
0x8005.4000	U0Base	-	-	UART 0 Base
0x8005.5000	U1Base	-	-	UART 1 Base
0x8005.6000	U2Base	-	-	UART 2 Base
0x8005.7000	U3Base	-	-	UART 3 Base
0x8005.8000	U4Base	-	-	UART 4 Base
0x8005.9000	U5Base	-	-	UART 5 Base
UxBase+0x00	RBR	8	0x00	Receiver Buffer Register (DLAB = 0, Read Only)
	THR 8 0x00 Transmitter Ho		Transmitter Holding Register (DLAB = 0, Write Only)	
	DLL	8	0x00	Divisor Latch Least Significant Byte (DLAB = 1, Read/Write)
UxBase+0x04	IER	8	0x00	Interrupt Enable Register (DLAB = 0, Read/Write)
	DLM	8	0x00	Divisor Latch Most Significant Byte (DLAB = 1, Read/Write)
UxBase+0x08	IIR	8	0x01	Interrupt Identification Register (Read Only)
	FCR	8	0x00	FIFO Control Register (Write Only)
UxBase+0x0C	LCR	8	0x00	Line Control Register (Read/Write)
UxBase+0x10	MCR	3	0x00	Modem Control Register (Read/Write)
UxBase+0x14	LSR	8	0x60	Line Status Register (Read/Write)
UxBase+0x18	MSR	8	0x00	Modem Status Register (Read/Write)
UxBase+0x1C SCR 8 0x00 Scratch Register (Read/Write)		Scratch Register (Read/Write)		
UxBase+0x30	UCR	6	0x00	UART Configuration Register (Read/Write)

Table 9-8 UART/SIR Register Summary

9.5.2.1 RBR

RBR is the Receive Buffer Register and stores the data from serial input. This register is read-only and can be accessed when DLAB(Bit7 of Line Control Register) is set to 0.

UxBase+0x00

7	(6	5	4	3	2	1	0				
Receiv	Receive Data Bit 7 ~ Receive Data Bit 0											
Bits	Туре	Function										

9.5.2.2 THR

THR is the Transmit Buffer Register and stores the data to be transmitted through serial output. This register is write-only and can be accessed when DLAB(Bit7 of Line Control Register) is set to 0.

UxBase+0x00

7	6	6 5	4	3	2	1	0				
Transr	Transmit Data Bit 7 ~ Transmit Data Bit 0										
Bits	Type	Function									
DILS	Type	TUNCTION									

9.5.2.3 DLL

DLL is the Divisor Latch Least Significant Byte Register and used to set the lower 8bit of 16-bit Baud-Rate divisor value.

UxBase+0x00

7	(6	5	4	3	2	1	0		
Baud-Rate divisor Bit 7 ~ Baud-Rate divisor Bit 0										
Bits	Туре	Function								

9.5.2.4 IER

IER is the Interrupt Enable Reigster and enables the five types of UART interrupts. Each interrupt can individually activate the interrupt (INTUART) output signal. It is possible to totally disable the interrupt Enable Register (IER). Similarly, setting bits of the IER register to logic 1 enables the selected interrupt(s). Disabling an interrupt prevents it from being indicated as active in the IIR and from activating the INTUART output signal. All other system functions operate in their normal manner, including the setting of the Line Status and MODEM Status Registers. Table 13-6: Summary of registers on page 13-10 shows the contents of the IER. Details on each bit follow.

UxBase+0x04

,Du	0.004							
	7	6	5	4	3	2	1	0
	0	0	0	0	MS INTR	LS INTR	TX EMPTY INTR	DATA RDY INTR

Bits	Туре	Function
7	R/W	0
6	R/W	0
5	R/W	0
4	R/W	0
3	R/W	Enables the MODEM Status Interrupt when set to logic 1.
2	R/W	Enables the Receiver Line Status Interrupt when set to logic 1.
1	R/W	Enables the Transmitter Holding Register Empty Interrupt when set to logic 1.
0	R/W	Enables the Received Data Available Interrupt (and time-out interrupts in the FIFO mode) when set to logic 1.

9.5.2.5 DLM

DLM is the Divisor Latch Most Significant Byte Register and used to set the Upper 8bit of 16-bit Baud-Rate divisor value.

UxBas	e+0x00								
	7		6	5	4	3	2	1	0
	Baud-R	ate diviso	or Bit 15 ~ Baud-	Rate divisor Bit 8					
	Bits	Туре	Function						
-	7:0	R/W	Upper 8-bit	of 16-bit Baud-Ra	ate divisor.				

9.5.2.6 IIR

UxBase+0x08

In order to provide minimum software overhead during data character transfers, the UART prioritizes interrupts into four levels and records these in the Interrupt Identification Register. The four levels of interrupt conditions are, in order of priority

- Receiver Line Status
- Received Data Ready
- Transmitter Holding Register Empty
- MODEM Status

Bit3~Bit0 of the IIR are used to identify the highest priority interrupt that is pending. Bit0 represents whether the interrupt is pending or not – If Bit0 is 1, no interrupt occurs now and if Bit0 is 0, an interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine. If two interrupts occurs simultaneously, Bit3~Bit0 of IIR represents the Higher priority number between these two interrupts. These bits represent the lower priority interrupt after CPU clears the higher priority interrupt.

When the CPU accesses the IIR, the UART freezes all interrupts and indicates the highest priority pending interrupt to the CPU. While this CPU access is occurring, the UART records new interrupts, but does not change its current indication until the access is complete.

Bit7~Bit6 of IIR are set to 1, when Bit0 of FCR(FIFO Control Register) is 1, otherwise these two bits are set to 0.

7	6	5	4	3	2	1	0
FIFO EN		0	0	INTR ID			INTR PEND

Bits	Туре	Functio	n			
		Value	Prioriy Level	Interrupt Type	Interrupt Source	Interrupt Reset Condition
3:0	R	0001	-	None	None	-
		0110	Highest	Receiver Line Status	Overrun Error or Parity Error or Framing Error or Break Interrupt Reading the Line Status Register	Reading the Line Status Register
		0100	Second	Received Data Available	Receiver Data Available or Trigger Level Reached	Reading the Receiver Buffer Register or the FIFO drops below the trigger level
		1100	Second	Character Time- out Indication	No Characters have been removed from or input to the RCVR FIFO during the last 4 Character times and there is at least 1 Character in it during this time	Reading the Receiver Buffer Register
		0010	Third	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Reading the IIR Register (if source of interrupt) or writing into the Transmitter Holding Register
		0000	Fourth	MODEM Status	Clear to Send or Data Set Ready or Ring Indicator or Data Carrier Detect	Reading the MODEM Status Register

9.5.2.7 FCR

This is a write-only register at the same location as the IIR (the IIR is a read-only register). This register is used to enable the FIFOs, clear the FIFOs and set the RCVR FIFO trigger level. UxBase+0x08 7 6 5 4 3 2 1 0 RCVR RCVR TRIG LEVEL XMIT RESET FIFO EN -_ RESET

Bits	Туре	Function						
7:6	W	These two bits sets the trigger level for the RCVR FIFO interrupt						
		Value RCVR FIFO Trigger Level (Bytes)						
		00 01						
		01 04						
		10 08						
		11 14						
5:3	-	Reserved						
2	W	Writing 1 resets the transmitter FIFO counter logic to 0. The shift register is not cleared. The 1 that is written to thi						
		bit position is self-clearing						
1	W	Writing 1 resets the receiver FIFO counter logic to 0. The shift register is not cleared. The 1 that is written to this						
		bit position is self-clearing						
0	W	Writing 1 enables both the XMIT and RCVR FIFOs. Resetting FCR0 will clear all bytes in both FIFOs. When						
		changing from FIFO Mode to 16C450 Mode and vice versa, data is automatically cleared from the FIFOs. This bit						
		must be a 1 when other FCR bits are written to or they will not be programmed						

9.5.2.8 LCR

The system programmer specifies the format of the asynchronous data communications exchange and set the Divisor Latch Access bit via the Line Control Register (LCR). The programmer can also read the contents of the Line Control Register. The read capability simplifies system programming and eliminates the need for separate storage in system memory of the line characteristics.

UxBase+0x0C

e+0x0C												
7		6	5	4	3	2	1	0				
DLAB		SET BREAK	STICK PARITY	EVEN PARITY	PARITY ENABLE	STOPBIT NUMBER	WORD L	ENGTH SELECT				
Bits	Туре	Function										
7		Baud Gen	erator during a	Read or Write op		set LOW (logic 0)		ivisor Latches of the Receiver Buffer, the				
6		This bit is to logic 1, The Break CPU to ale	the Break Contr the serial outpu Control bit acts ert a terminal in	ol bit. It causes a t (SOUT) is force only on SOUT a a computer comr	break condition to d to the Spacing (nd has no effect o nunications system	be transmitted to ogic 0) state. The n the transmitter I n. If the following	break is disal ogic. Note: Th	UART. When it is set oled by setting logic 0 is feature enables the ollowed, no erroneous				
5		or extraneous characters will be transmitted because of the break. This bit is the Stick Parity bit. When bits 3, 4 and 5 are logic 1 the Parity bit is transmitted and checked as logic 0. If bits 3 and 5 are 1 and bit 4 is logic 0 then the Parity bit is transmitted and checked as logic 1. If bit 5 is a logic 0 Stick Parity is disabled.										
4		transmittee	d or checked in		bit 3 is logic 1 and s and Parity bit. W	•		•				
3	This bit is the Parity Enable bit. When bit 3 is logic 1, a Parity bit is generated (transmit data) or checked (rece data) between the last data word bit and Stop bit of the serial data. (The Parity bit is used to produce an even odd number of 1s when the data word bits and the Parity bit are summed). This bit specifies the number of Stop bits transmitted and received in each serial character. If bit 2 is logic 0, o Stop bit is generated in the transmitted data. If bit 2 is logic 1 when a 5-bit word length is selected via bits 0 ar one and a half Stop bits are generated. If bit 2 is a logic 1 when either a 6-, 7- or 8-bit word length is selected, Stop bits are generated. The Receiver checks the first Stop-bit only, regardless of the number of Stop bits selected.											
2												
1:0	R/W	These two and 1 is as	• •	number of bits ir	n each transmitted	and received seri	al character.	The encoding of bits 0				
		Value	Character I	ength								
		00 01	5 Bits 6 Bits									
		10 11	7 Bits 8 Bits									

Programmable Baud Generator

HMS30C7210 UART can use only 3.692308MHz (PCLK) that is made from 48MHz (CCLK) clock at PMU. In addition, UART0 / UART1 can select 3.55556MHz (QCLK) that is also made at PMU for Smart Card operation and the selection between 3.692308MHz and 3.55556MHz is performed by setting CLOCKSEL (bit4 of UCR). The output frequency of the Baud Generator is $16 \times$ the Baud [divisor # = (frequency input) / (baud rate x 16)]. Two 8-bit latches store the divisor in a 16-bit binary format. These Divisor Latches must be loaded during initialization to ensure proper operation of the Baud Generator. Upon loading either of the Divisor Latches, a 16-bit Baud counter is immediately loaded.

Baud rate table below provides decimal divisors to use with a frequency of 3.692308MHz. For baud rates of 38400 and below, the error obtained is minimal. The accuracy of the desired baud rate is dependent on the crystal frequency chosen. Using a divisor of zero is not recommended.

Desired Baud Rate	Decimal Divisor	Percent Error Difference Between
	(Used to generate 16 x Clock)	Desired and Actual
50	4608	-
110	2094	0.026
300	768	-
1200	192	-
2400	96	-
4800	48	-
9600	24	-
19200	12	-
38400	6	-
57600	4	
115200	2	

Table 9-9 Baud Rate with Decimal Divisor at 3.92308MHz Clock Input

9.5.2.9 MCR(Uart5 Only)

This register controls the interface with the MODEM or data set (or a peripheral device emulating a MODEM) and is valid at only UART5 because the onlu UART5 has the external modem pins.

In addition, MCR should not be accessed at UART0 and UART1, because UART0 and UART1 use this address for address of SMR(Smart Card Mode Register).

UxBase+0x10

 00.00							
7	6	5	4	3	2	1	0
0	0	0	LOOP		-	RTS UART5 Only	DTR UART5 Only

Bits	Туре	Function
7:5	R	These bits are permanently set to logic 0
4	R/W	This bit provides a local loop back feature for diagnostic testing of the UART. When bit 4 is set to logic 1, the following occur: the transmitter Serial Output (SOUT) is set to the Marking (logic 1) state; the receiver Serial Input (SIN) is disconnected; the output of the Transmitter Shift Register is "looped back" into the Receiver Shift Register input; the four MODEM Control inputs (NCTS, NDSR, NDCD and NRI) are disconnected; and the two MODEM Control outputs (NDTR and NRTS) are internally connected to the four MODEM Control inputs, and the MODEM Control output pins are forced to their inactive state (HIGH). On the diagnostic mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit- and received-data paths of the UART. In the diagnostic mode, the receiver and transmitter interrupts are fully operational. Their sources are external to the part. The MODEM Control interrupts are also operational, but the interrupts sources are now the lower four bits of the MODEM Control Register instead of the four MODEM Control inputs. The interrupts are still controlled by the Interrupt Enable Register.
3:2	-	Reserved
1	R/W	This bit controls the Request to Send (nURTS) output. Bit 1 affects the NRTS output in a manner identical to that described above for bit 0.
0	R/W	This bit controls the Data Terminal Ready (nUDTR) output. When bit is set to logic 1, the NDTR output is forced to logic 0. When bit 0 is reset to logic 0, the NDTR output is forced to logic 1. Note : The NDTR output of the UART may be applied to an EIA inverting line driver (such as the DS1488) to obtain the proper polarity input at the succeeding MODEM or data set.

9.5.2.10 LSR

This register provides status information to the CPU concerning the data transfer.

PE de LSR7 is set when there when the CPU reads the L 6 is set to a logic 1 whene R) are both empty. It is res		DR parity error, frar						
when the CPU reads the L 6 is set to a logic 1 when		parity error, fran						
when the CPU reads the L 6 is set to a logic 1 when		parity error, fran						
when the CPU reads the L 6 is set to a logic 1 when								
6 is set to a logic 1 when								
	ever the Transr	nitter Holdina						
ode this bit is set to one w								
IRE) indicator. Bit 5 indicat	tes that the UA	RT is ready to						
		•						
er polling this bit. If you wa	ant to use the t	ransmit idle stat						
mode, you had better to c	heck the TEMF	o(bit6 of this						
d to check the timing to wr	rite transmit dat	a in polling mod						
e interrupt mode.								
to logic 1 whenever the re	eceived data in	put is held in the						
smission time (that is, the f	total time of Sta	art bit + data bits						
the CPU reads the conter	nts of the Line S	Status Register.						
ular character in the FIFO	it applies to. Th	nis error is revea						
of the FIFO. When break	occurs, only o	ne zero characte						
nabled after SIN goes to th	ne marking stat	e and receives						
ver Line Status interrupt w	vhenever any o	f the correspond						
		•						
		•						
the CPU when its associated character is at the top of the FIFO. The UART will try to re-synchronize after a								
rror was due to the next st	tart bit, so it sar	nples this "start"						
المراجع والمستعمل والمتعالية والمستعمل		at have the s						
	•							
	•							
•								
o as soon as it happens.	THE CHARACLER	in the shift regis						
0 in not to logic 1 when any	or o complete :-	nooming chore						
-	•	•						
the Ferent Joch Hanser cuper ei zath hir of ei zeletin Cizid uter F	this bit causes the UART the enable is set HIGH. The The Register into the Transmitter Holding Register. In the I e is written to the XMIT FIF fter polling this bit. If you way groude, you had better to card to check the timing to whe interrupt mode. The to logic 1 whenever the rest of the transmission time (that is, the rest the CPU reads the content caular character in the FIFO polither FIFO. When break enabled after SIN goes to the eiver Line Status interrupt we cates that the received chard the last data bit or parity bithe CPU reads the contents of the FIFO. The UART will error was due to the next status in the FIFO it applies to. The CPU reads the contents of the FIFO it applies to. The OLART will error was due to the next status in the FIFO it applies to. The OLART will error was due to the next status the transmister of the FIFO. The UART will error was due to the next status the receiver Buffer Fupon detection of an overr ter. If the FIFO is full and the ne PU as soon as it happens.	this bit causes the UART to issue an inter enable is set HIGH. The THRE bit is set to Register into the Transmitter Shift Registe er Holding Register. In the FIFO mode this e is written to the XMIT FIFO. fter polling this bit. If you want to use the tr g mode, you had better to check the TEMF ed to check the timing to write transmit dat he interrupt mode. et to logic 1 whenever the received data in assission time (that is, the total time of Sta r the CPU reads the contents of the Line St cular character in the FIFO it applies to. Th p of the FIFO. When break occurs, only or enabled after SIN goes to the marking stat eiver Line Status interrupt whenever any o cates that the received character did not he the last data bit or parity bit is detected as he CPU reads the contents of the Line St r character in the FIFO it applies to. This e of the FIFO. The UART will try to re-synch error was due to the next start bit, so it sar es that the received data character does r lect bit. The PE bit is set to logic 1 upon de the contents of the Line Status Register. In n the FIFO it applies to. This error is revea						

Some bits in LSR are automatically cleared when CPU reads the LSR register, so

interrupt handling routine should be written that if once reads LSR, then keep the value through entire the routine because second reading LSR returns just reset value.

9.5.2.11 MSR (Uart5 Only)

This register provides the current state of the control lines from the MODEM (or peripheral device) to the CPU. In addition to this current-state information, four bits of the MODEM Status Register provide change information. These bits are set to logic 1 whenever a control input from the MODEM change state. They are reset to logic 0 whenever the CPU reads the MODEM Status Register.

UxBase+0x18

7		6	5	4	3	2	1	0			
DCD		RI	DSR	CTS	DDCD	TERI	DDSR	DCTS			
Bits	Туре	Functio	on								
7	R/O	equivale	ent to OUT2 in the	MCR.	rier Detect (nUDCE an interrupt is gene	, ,					
6	R/O	equivale Note: W	ent to OUT1 in the	MCR. hanges its state f	cator (nURING) inp						
5	R/O										
4	R/O	equivale	ent to RTS in the I	MCR.	Send (nUCTS) inpu an interrupt is gene	(17					
3	R/O	This bit changeo	Note: Whenever this bit changes its state, an interrupt is generated if the MODEM Status Interrupt is enabled. This bit is the Delta Data Carrier Detect (nUDCD) indicator. Bit 3 indicates that the nUDCD input to the chip has changed state since the last time it was read by the CPU. Note: Whenever bit 0, 1, 2 or 3 is set to logic 1, a MODEM Status Interrupt is generated.								
2	R/O		is the Trailing Edg		or (TERI) detector.	Bit 2 indicates th	at the nURING i	nput to the chip has			
1	R/O		is the Delta Data d state since the I		SR) indicator. Bit 1 ad by the CPU.	indicates that the	e nUDSR input to	the chip has			
0	R/O	This bit		to Send (nUCTS) indicator. Bit 0 inc	licates that the n	UCTS input to th	e chip has changed			

9.5.2.12 SCR

This 8-bit Read/Write Register does not control the UART in any way. It is intended as a scratchpad register to be used by the programmer to hold data temporarily.

UxBa	se+0x1C			·	Ũ		,			,	
	7		6	5		4	3	2	1	0	
	DATA										
	Bits	Туре	Function								
	7:0	R/W	Temporary	data stora	age						

9.5.2.13 UCR (Uart Configuration Register)

To make the Smart Card Interface mode set, SMCARDEN and UARTEN are set to '1' at the same time.

If you use SIR function, you must set SIREn and UART En bit at the same time.

7	6	5	4	3	2	1	0
-	-	SMCARDEN Uart0/1 only	CLOCKSEL Uart0/1 only	SIR Loop Back Uart4 only	Full Duplex Force Uart4 only	SIREN Uart4 only	UARTEN
Bits	Туре	Function					
7:6	-	Reserved					
5	R/W	Smart Card Interface m 0 = Smart Card interfac 1 = Smart Card interfac	e disable				
4	R/W	Clock Select 0 = 3.6864MHz 1 = 3.5712MHz					
3	R/W	SIR Loop-back Test (Ua 0 = SIR Loop-back Test 1 = SIR Loop-back Test	disable				
2	R/W	SIR Full-duplex Force (0 = Half Duplex. 1 = Full Duplex.	Uart1 only)				
1	R/W	SIR Enable (Uart1 only 0 = SIR Mode disable 1 = SIR Mode enable)				
0	R/W	UART Enable. 0 = UART disable (Pow 1 = UART enable.	er-Down), UART Clo	ock stop.			

9.5.3 FIFO Interrupt Mode Operation

When the RCVR FIFO and receiver interrupts are enabled (FCR 0 = 1, IER 0 = 1) RCVR interrupts occur as follows:

- The received data available interrupt will be issued to the CPU when the FIFO has reached its programmed trigger level. It will be cleared as soon as the FIFO drops below its programmed trigger level.
- The IIR receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt, it is cleared when the FIFO drops below the trigger level.
- The receiver line status interrupt (IIR-06), as before, has higher priority than the received data available (IIR-04) interrupt.
- The data ready bit (LSR 0) is set as soon as a character is transferred from the shift register to the RCVR FIFO. It is reset when the FIFO is empty.

When RCVR FIFO and receiver interrupts are enabled, RCVR FIFO time-out interrupts occurs as follows:

- A FIFO time-out interrupt occurs if the following conditions exist: at least one character is in the FIFO
- the most recent serial character received was longer than four continuous character times ago (if two stop bits are programmed, the second one is included in this time delay)
- the most recent CPU read of the FIFO was longer than four continuous character times ago This will cause a maximum character received to interrupt issued delay of 160 ms at 300 baud with a 12-bit character.
- Character times are calculated by using the RCLK input, which is the internal signal of UART for a clock signal (this makes the delay proportional to the baud rate).
- When a time-out interrupt has occurred, it is cleared and the timer is reset when the CPU reads one character from the RCVR FIFO.
- When a time-out interrupt has not occurred the time-out timer is reset after a new character is received or after the CPU reads the RCVR FIFO.

When the XMIT FIFO and transmitter interrupts are enabled (FCR 0 = 1, IER 1 = 1), XMIT interrupts occurs as follows:

- The transmitter holding register interrupt (02) occurs when the XMIT FIFO is empty. It is cleared as soon as the transmitter holding register is written to (1 to 16 characters may be written to the XMIT FIFO while servicing this interrupt) or the IIR is read.
- The transmitter FIFO empty indications will be delayed 1 character time minus the last stop bit time whenever the following occurs: THRE = 1 and there has not been at least two bytes at the same time in the transmit FIFO since the last THRE = 1. The first transmitter interrupt affect changing FCR0 will be immediate if it is enabled.

Character time-out and RCVR FIFO trigger level interrupts have the same priority as the current received data available interrupt; XMIT FIFO empty has the same priority as the current transmitter holding register empty interrupt.

9.5.4 FIFO Polling Mode Operation

When FCR is set to 1 and all bits of IER are clear to '0', UART is put to the FIFO polled mode of operation. In this mode, user program will check Receive and Transmit status via Line Status Register. CPU should do appropriate operation at each case of Line Status Register.:

- LSR0 will be set as long as there is one byte in the Receive FIFO.
- LSR1~LSR4 will specify which error has occurred. Character error status is handled the same way when in the interrupt mode, the IIR is not affected since IER2 is '0'.
- LSR5 will indicate when the Transmit FIFO is empty.
- LSR6 will indicate that both the Transmit FIFO and shift register are empty.
- LSR7 will indicate whether there are any errors in the Receive FIFO
- There are no trigger level reached or timeout condition indicated in the FIFO Polled Mode.

9.6 SMART Card Interface

A Smart Card interface is an extension of UART0/UART1 functions and supports the ISO7816-3 standard.

The switchover between normal UART function and Smart Card interface function is controlled by setting a UART Configuration register (UCR) appropriately. If the UARTEN bit and SMCARDEN bit of UCR are set simultaneously, the UART0 and UART1 are changed from normal UART mode to Smart Card Interface mode.

FEATURES

- Card detect function(support the detection of case that card's present and absent both)
- Execute automatic contact activation and deactivation sequence.
- Programmable clock cycle number setting of Reset transition.
- Built-in baud generator allows any bit rate to be selected.
- Supports the asynchronous Smart Card communication.
- Half-duplex data communication
- 8-bit data length
- Support direct convention and indirect convention both
- Parity bit generation and check
- Transmit error signal (parity error) in receive mode
- Error signal detection and automatic retransmission in transmission mode
- Programmable extra guard time in transmission mode
- Programmable waiting time cycle number.
- Clock is enabled or disabled by register setting.

9.6.1 External Signals

UART0 and UART1 have Smart Card Interface extension. At setting the Smart Card Interface. Enable bit of UCR, the signals table below are enabled at each UART / Smart Card Interface.

These Smart Card Interface pin names are same as HMS30C7210 Top pin names.

Pin Name	Туре	Description
SCPRES[1:0]	I	Card Present signal This signal indicates that Smart Card is present(if this signal is logic '1') or not(if this signal is log '0') in the slot. The Card detect interrupt is generated at the rising edge(Card is inserted) and falling edge(Card is removed) both if the Card detect interrupt is enable in IER
SCIO[1:0]	I/O	Data in/out signal from/to external Smart Card. This signal shall be fixed to logic '0' at idle state. This signal is set in receive mode except transmitting data or parity error flag after contact activation starts
SCRST[1:0]	0	Smart Card reset signal. This signal is fixed to logic '0' at idle state. On starting of contact activation sequence, this signal remains to logic '0' waiting ATR until the number of clock cycle set in the RTR. If the ATR is not received until that number of clock cycle, CRST is set to logic '1' and waits for ATR during the number of clock cycle set in the RTR once more. If There is no ATR and the clock cycle elapses(the initialization of Smart Card fails) ,the contact deactivation start and the CRST is et to logic '0'
SCCLK[1:0]	0	Smart Card Clock signal. This clock starts when contact activation sequence starts(If CardInit and CLKEn are set to '1' in 1 SMR). During the data transfer, 1-bit period is configured to the any number of CCLK cycle as configured by divider value of DLL/DLM and BaudSel of SMR if CLKEn of SMR is set to '1'. If the BaudSel is set to '1', 1-bit period is "31 X divider-value". If the BaudSel is set to '0', 1-bit period is "16 X divider value". The CCLK can be disabled by setting CLKEn of SMR to '0'. In this case, CCLK is fixed to '0' if CLKPol is '0' and CCLK is fixed to '0' if CCLK is fixed to '1'

Refer to Figure 2-1. 208 Pin diagram.

9.6.2 Registers

After UART0 and UART1 is set to the Smart Card Interface mode, the register set is changed from the normal UART registers to Smart Card Interface(SCI) registers as blow.

Address	Name	Width	Default	t Description					
0x8005.4000	SCI0Base	-	-	Smart Card Interface 0 Base					
0x8005.5000	SCI1Base	-	-	Smart Card Interface 1 Base					
SCIxBase+0x00	RBR	8	0x00	Receiver Buffer Register (DLAB = 0, Read Only)					
	THR	8	0x00	Transmitter Holding Register (DLAB = 0, Write Only)					
	DLL	8	0x00	Divisor Latch Least Significant Byte (DLAB = 1, Read/Write)					
SCIxBase+0x04	IER	8	0x00	Interrupt Enable Register (DLAB = 0, Read/Write)					
	DLM	8	0x00	Divisor Latch Most Significant Byte (DLAB = 1, Read/Write)					
SCIxBase+0x08 IIR 8 0x01				Interrupt Identification Register (Read Only)					
	FCR	8	0x00	FIFO Control Register (Write Only)					
SCIxBase+0x0C	LCR	8	0x00	Line Control Register(Read/Write)					
SCIxBase+0x10	SMR	12	0x00	Smart Card Mode Register(Read/Write)					
SCIxBase+0x14	LSR	8	0x60	Line Status Register(Read Only)					
SCIxBase+0x18	SSR	8	0xX0	Smart Card Status Register(Read Only)					
SCIxBase+0x1C	SCR	8	0x00	Scratch Register(Read/Write)					
SCIxBase+0x20	RTR	16	0x0190	Reset Timing Register(Read/Write)					
SCIxBase+0x24	RNR	8	0x00	Retransmit number Register(Read/Write)					
SCIxBase+0x28	WTR	24	0x2580	Waiting Time Register(Read/Write)					
SCIxBase+0x2C	EGR	8	0x00	Smart Card Interface Extra-Guard Time Register(Read/Write).					
SCIxBase+0x30	UCR	6	0x00	UART Configuration Register(Read/Write)					

Table 9-10 Smart Card Interface Register Summary

9.6.2.1 RBR

RBR is the Receive Buffer Register and stores the data from serial input. This register is read-only and can be accessed when DLAB(Bit7 of Line Control Register) is set to 0. SCIxBase+0x00

7		6	5	4	3	2	1	0				
Receiv	Receive Data Bit 7 ~ Receive Data Bit 0											
Bits	Type	Function										
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											

9.6.2.2 THR

THR is the Transmit Buffer Register and stores the data to be transmitted through serial output. This register is write-only and can be accessed when DLAB(Bit7 of Line Control Register) is set to 0. SCIxBase+0x00

7	6	6	5	4	3	2	1	0			
Transmit Data Bit 7 ~ Transmit Data Bit 0											
Bits	Туре	Function									

9.6.2.3 DLL

DLL is the Divisor Latch Least Significant Byte Register and used to set the lower 8bit of 16-bit Baud-Rate divisor value. SCIxBase+0x00 7 6 2 0 5 4 3 1 Baud-Rate divisor Bit 7 ~ Baud-Rate divisor Bit 0 Bits Туре Function R/W 7:0 Lower 8-bit of 16-bit Baud-Rate divisor.

9.6.2.4 IER/DLM

This register enables the five types of Smart Card Interface interrupts. Each interrupt can individually activate the interrupt (INTUART) output signal. It is possible to totally disable the interrupt Enable Register (IER). Similarly, setting bits of the IER register to logic 1 enables the selected interrupt(s). Disabling an interrupt prevents it from being indicated as active in the IIR and from activating the INTUART output signal. All other system functions operate in their normal manner, including the setting of the Line Status and Smart Card Status Registers. Table 13-6: Summary of registers on page 13-10 shows the contents of the IER. Details on each bit follow. SCIxBase+0x04

	COIND	196 - 0704					
7	6	5	4	3	2	1	0
0	0	CARD DET INTR	WAIT TIME INTR	TX LS INTR	RX LS INTR	TX EMPTY INTR	DATA RDY INTR

Bits	Туре	Function
7	R/W	0
6	R/W	0
5	R/W	Enable the Card Detect (Card insertion or removal) interrupt
4	R/W	Enables the Initialization Fail (ATR is not received) Interrupt or Waiting Time Out interrupt
3	R/W	Enables the Transmitter Line Status(Parity error) Interrupt when set to logic 1.
2	R/W	Enables the Receiver Line Status (Overrun/Parity error) Interrupt when set to logic 1.
1	R/W	Enables the Transmitter Holding Register Empty Interrupt when set to logic 1.
0	R/W	Enables the Received Data Available Interrupt (and time-out interrupts in the FIFO mode) when set to logic 1.

9.6.2.5 DLM

DLM is the Divisor Latch Most Significant Byte Register and used to set the Upper 8bit of 16-bit Baud-Rate divisor value.

		SCIXDa	ise+0x00					
7	e	6	5	4	3	2	1	0
Baud-	Rate divisor	Bit 15 ~ Baud-l	Rate divisor Bit 8					
Bits	Туре	Function						

9.6.2.6 IIR

In order to provide minimum software overhead during data character transfers, the Smart Card Interface prioritizes interrupts into five levels and records these in the Interrupt Identification Register. The five levels of interrupt conditions are, in order of priority

- Card Detect (Card insert or removal)
- Receiver Line Status / Transmitter Line Line Status
- Received Data Ready
- Transmitter Holding Register Empty
- Card Initialize Fail / Waiting Time Out

Bit4~Bit0 of the IIR are used to identify the highest priority interrupt that is pending. Bit0 represents whether the interrupt is pending or not – If Bit0 is 1, no interrupt occurs now and if Bit0 is 0, an interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine. If two interrupts occurs simultaneously, Bit4~Bit0 of IIR represents the Higher priority number between these two interrupts. These bits represent the lower priority interrupt after CPU clears the higher priority interrupt.

When the CPU accesses the IIR, the UART freezes all interrupts and indicates the highest priority pending interrupt to the CPU. While this CPU access is occurring, the UART records new interrupts, but does not change its current indication until the access is complete.

Bit7~Bit6 of IIR are set to 1, when Bit0 of FCR(FIFO Control Register) is 1, otherwise these two bits are set to 0.

	SCIxBa	ase+0x08					
7	6	5	4	3	2	1	0
FIFO EN		0	INTR ID				INTR PEND

Bits	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		Value	Prioriy Level	Interrupt Type	Interrupt Source	Interrupt Reset Condition
4:0	R	00001	-	None	None	-
		01000	Highest	Card Detect Status	Card insert or removal from/to slot	Reading the Smart Card Status Register
		00110	Second	Receiver Line Status	Overrun Error or Parity Error	Reading the Line Status Register
		10110	Second	Transmitter Line Status	Transmit Parity Error	Reading the Line Status Register
		00100	Third	Receiver Data Avaliable	Receiver Data Available or Trigger Level Reached	Reading the Receiver Buffer Register or the FIFO drops below the trigger level
		10100	Third	Character Time- out Indication	No Characters have been removed from or input to the RCVR FIFO during the last 4 Character times and there is at least 1 Character in it during this time	Reading the Receiver Buffer Register
		00010	Fourth	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Reading the IIR Register (if source of interrupt) or writing into the Transmitter Holding Register
		00000	Fifth	Wating Timeout	Receive serial data waiting time is elapsed	Reading the Smart Card Status Register

10000 Fifth	Card Initialization Fail	The External Smart Card dose not give the ATR during the initialization cycle	Reading the Smart Card Status Register
-------------	-----------------------------	---	---

9.6.2.7 FCR

This is a write-only register at the same location as the IIR (the IIR is a read-only register). This register is used to enable the FIFOs, clear the FIFOs and set the RCVR FIFO trigger level.

	SCIxBa	ase+0x08					
7	6	5	4	3	2	1	0
RCVR TRIG LE	EVEL	-	-	-	XMIT RESET	RCVR RESET	FIFO EN

Bits	Туре	Function
7:6	W	These two bits sets the trigger level for the RCVR FIFO interrupt
		Value RCVR FIFO Trigger Level (Bytes)
		00 01
		01 04
		10 08
		11 14
5:3	-	Reserved
2	W	Writing 1 resets the transmitter FIFO counter logic to 0. The shift register is not cleared. The 1 that is written to this bit position is self-clearing
1	W	Writing 1 resets the receiver FIFO counter logic to 0. The shift register is not cleared. The 1 that is written to this bit position is self-clearing
0	W	Writing 1 enables both the XMIT and RCVR FIFOs. Resetting FCR0 will clear all bytes in both FIFOs. When changing from FIFO Mode to 16C450 Mode and vice versa, data is automatically cleared from the FIFOs. This bit must be a 1 when other FCR bits are written to or they will not be programmed

9.6.2.8 LCR

The system programmer specifies the format of the asynchronous data communications exchange and set the Divisor Latch Access bit via the Line Control Register (LCR). The programmer can also read the contents of the Line Control Register. The read capability simplifies system programming and eliminates the need for separate storage in system memory of the line characteristics. SCIxBase+0x0C

	_		aseruxuc		_		_			
7		6	5	4	3	2	1	0		
DLAB		SET BREAK	SET BREAK STICK EVEN PARITY STOPBIT PARITY PARITY PARITY ENABLE NUMBER WORD LENGTH SELECT							
Bits	Туре	Function								
7		Baud Gen	erator during a	Read or Write ope		set LOW (logic 0)		Divisor Latches of the e Receiver Buffer, the		
6		This bit mu It causes (SOUT) is only on SC a compute	a break conditi forced to the Sp DUT and has no	at the Smart Carc on to be transmitt bacing (logic 0) st effect on the tran ns system. If the	ed to the receivin ate. The break is smitter logic. Not	disabled by setting e: This feature en	g logic 0. The ables the CPl	1, the serial output Break Control bit acts J to alert a terminal in extraneous characters		
5		This bit is This bit mu When bit	the Stick Parity ust be set to '0' s 3, 4 and 5 are	bit. at the Smart Carc logic 1 the Parity	bit is transmitted	and checked as ligits of the second sec		3 and 5 are 1 and bit 4 arity is disabled.		
4		This bit is This bit mu This bit mu When bit	the Even Parity ust be set to '1' ust be set to '0' 3 is logic 1 and	Select bit. at the Smart Carc at the Smart Carc l bit 4 is logic 0, a	I Interface direct c I Interface indirect n odd number of I	onvention mode	tted or checke	ed in the data word bits		
3		This bit is This bit mu When bit word bit ar	the Parity Enab ust be set to '1' 3 is logic 1, a F nd Stop bit of th	le bit. at the Smart Carc Parity bit is genera	I Interface mode ited (transmit data e Parity bit is used	a) or checked (rec	eive data) bei	ween the last data mber of 1s when the		
2		This bit sp This bit mu If bit 2 is selected v word lengt	ecifies the num ust be set to '1' logic 0, one Sto ia bits 0 and 1,	ber of Stop bits tra at the Smart Carc p bit is generated one and a half Sto vo Stop bits are g	ansmitted and rec I Interface mode. I in the transmitted op bits are genera	ited. If bit 2 is a log	gic 1 when a gic 1 when ei	5-bit word length is ther a 6-, 7- or 8-bit only, regardless of the		
1:0	R/W	These two These two	bits specify the bits must be '1	number of bits in 1'(8-bit) at Smart d 1 is as follows:	each transmitted Card Interface mo	and received seriode	ial character.			
		00 01 10 11	5 Bits 6 Bits 7 Bits 8 Bits							

Programmable Baud Generator

The UART0,1 / Smart Card Interface contains a programmable Baud Generator that is capable of taking clock input (3.692308MHz or 3.555556MHz) and dividing it by any divisor from 2 to 2^{16} -1. UART0,1/ Smart Card Interface can select between 3.692308MHz and 3.555556HMz is performed by setting CLOCKSEL (bit4 of UCR). These Divisor Latches must be loaded during initialization to ensure proper operation of the Baud Generator. Upon loading either of the Divisor Latches, a 16-bit Baud counter is immediately loaded. The output frequency of the Baud Generator is 16 x the Baud [divisor # = (frequency input) / (baud rate x 16)], if BaudSel of SMR is logic '0' or 31 x the Baud [divisor # = (frequency input) / (baud rate x 31)], if BaudSel of SMR is logic '1'. The selection of BaudSel depends on FI bits of ATR in the Smart Card Initialization process. If the forth bit of FI is logic '0', the BaudSel shall be set to '1'. If the forth bit of FI is logic '1', the BaudSel shall be set to '0'. Two 8-bit latches store the divisor in a 16-bit binary format.

Baud rate table below provides decimal divisors to use with a frequency of 3.555556MHz and BaudSel is logic '1' or '0'. Using a divisor of zero is not recommended.

Desired Baud Rate	Decimal Divisor	Percent Error Difference Between
	(Used to generate 16 x Clock)	Desired and Actual
9600	12 (BaudSel = 1, FI = 0001)	-
6400	18 (BaudSel = 1, FI = 0010)	-
4800	24 (BaudSel = 1, FI = 0011)	-
3200	36 (BaudSel = 1, FI = 0100)	-
2400	48 (BaudSel = 1, FI = 0101)	-
1920	60 (BaudSel = 1, FI = 0110)	-
6975	32 (BaudSel = 0, FI = 1001)	-
4650	48 (BaudSel = 0, FI = 1010)	-
3487	64 (BaudSel = 0, FI = 1011)	-
2325	96 (BaudSel = 0, FI = 1100)	
1744	128 (BaudSel = 0, FI = 1101)	

Table 9-11 Baud Rate with Decimal Divisor at 3.55556MHz Clock Input

9.6.2.9 SMR (Smart Card Mode Register)

This register controls the configuration when Smart Card interface mode is enabled. SCIxBase+0x10

		JUINDE	ise+0x10									
					11	10	9	8				
					DISINIT	DIRCTLEN	RSTVAL	IOVAL				
7		6	5	4	3	2	1	0				
CARD	INIT	RETRANEN	DATAPOL	-	DATADIR	CLKVAL	CLKEN	BAUDSEL				
Bits	Туре	Function										
11	R/W	Before data	I Initialization Seq a is transferred be from Smart Card	tween Smar	le bit t Card and SCI, Sma	art Card Contact m	ust be activated	and ATR must be				
		If this bit is is set to '1'.	reset to '0', the al	oove initializ	ation sequence is pe ization sequence and							
		to '1'.		ар ало плаа	initiation of quoties and							
10	R/W	Direct contr	rol of CIO/CRST	enable bit								
					are controlled directly		(bit8 of this regis	ster) or				
					urrent state of initiali			_				
					n's levels are control							
			s in the data trans		' when SCI is in Sma	rt Card Contact Ac	tivation state, C	RST is fixed to "1"				
9	R/W				hen Direct control of	CIO/CRST is enab	led					
•								when DIRCTLEN is				
			This bit is used to indicate state of the CRST pin when Direct control of CIO/CRST is enabled (when DIRCTLEN is set to '1'). If this bit is reset to '0' and DIRCTLEN(bit10 of this register) is '1', the CRST pin is fixed to logic '0'									
		state. Otherwise, the CCLK pin is fixed to logic '1' state										
8	R/W	Data bit(Cl	O signal) level se	ect bit when	Direct control of CIC	D/CRST is enabled						
		Data bit(CIO signal) level select bit when Direct control of CIO/CRST is enabled This bit is used to indicate state of the CIO pin when Direct control of CIO/CRST is enabled (when DIRCTLEN is										
		,			RCTLEN(bit10 of this	register) is '1', the	CIO pin is fixed	I to logic '0' state.				
			the CCLK pin is	s fixed to log	jic '1' state							
7	R/W		I Initialization bit.									
					when this bit and C							
					essfully finished, the							
			h the external car		to '0' to make the cor		equence start a					
					n the case that the e	xternal card does r	not give the ATR	and initialization i				
		This bit is also reset to '0' automatically in the case that the external card does not give the ATR and initialization is failed. At this case, the contact deactivation sequence starts automatically										
6	R/W		Retransmit Enable bit									
		This bit is s	This bit is set to enable the retransmission of parity-errored data at transmitter operation and the transmission of									
			t receiver operatio									
		If this bit is	reset to '0', the fu	nction of err	or flag transmission	and data retransm	ission is disable					
5	R/W	Data bit(CIO signal) polarity bit										
				-	f CIO corresponds to		gic 0 level to sta	te A. Otherwise,				
					nd the logic 0 level to							
4					nvention and this bit	shall be set to '1' a	at indirect conve	ntion				
4	-		or normal UART f									
3	R/W		O signal) directior		ne transfer is perform	ad in LCD first and	or Othonwing th	o data frama ia				
			in MSB-first order				ei. Oli iei wise, li					
					nvention and this bit	shall he set to '1' a	at indirect conve	ntion				
2	R/W		select bit when (
-					CLK pin when CCLK	is not enabled (wh	en CLKEN is re	set to '0'). If this bi				
					ister) is '0', the CCLI			,				
			to logic '1' state		, ,			,				
1	R/W	CCLK enab										
		This bit is u	sed to enable or	disable the (CCLK pin. If this bit is	reset to '0', CCLK	c pin is disabled	and fixed to logic				
					register) Otherwise,							

		to CCLK pin
0	R/W	Baud Select bit
		The output frequency of the Baud Generator is 16 x the Baud [divisor # = (frequency input) / (baud rate x 16)], this bit is logic '0'. 31 x the Baud [divisor # = (frequency input) / (baud rate x 31)], if this bit is logic '1'.

9.6.2.10 LSR

This register provides status information to the CPU concerning the data transfer. SCIxBase+0x14

7		SCIx		4	2	2	1	0
		6	5	4	3	2	1	0
FIFO E	ERR	TEMT	THRE	TXPE	-	PE	OE	DR
Bits	Туре	Function	n					
7	R			is always 0. In the hen the CPU reads				e parity error in the FIFO.
6	R	This bit in Register THR or 1	s the Transmitte (THR) and the	r Empty (TEMT) in Fransmitter Shift Re	dicator. Bit 6 is egister (TSR) a	s set to a logic 1 wh are both empty. It is	nenever the Trans s reset to logic 0 v	
5	R	interface Interface The THF Transmit Register	is ready to acce to issue an inte RE bit is set to a tter Shift Registe	logic 1 when a cha r. The bit is reset to	for transmiss hen the Trans racter is trans logic 0 concu	ion. In addition, this mit Holding Registe ferred from the Trai irrently with the loa	s bit causes the L er Empty Interrup nsmitter Holding I ding of the Trans	JART/Smart Card t enable is set HIGH Register into the
4	R-	the case the error transmit If RETR/ reset wh with the characte Note: Bits 4 is	that the externa ed data frame for error flag also ANEN bit of SMI enever the CPU particular character is at the top of the error conditi	al card transmits the or the times of the F R is set to '0', this b reads the contents cter in the FIFO it a the FIFO.	e parity error fl RNR value, bu it is set to '1' a s of the Line S pplies to. This Transmitter Li	ag of received data t parity will not be r is soon as the parit tatus Register. In th error is revealed to	a and the interface emoved and the ty error flag is rec ne FIFO mode thi to the CPU when i	eived. This bit is is error is associated
2				nart Card Interface				
<u>3</u> 2	R	This bit is detectior transmit	s the Receive P	arity Error (PE) indi	cator. If RETF			it is set to '1' upon
		This bit is this error	the error flag an external card is s reset to logic (r is associated w	d the external card	retransmits the saved in the F J reads the contaracter in the	e data. If the numb NR but error is not ntents of the Line \$	per of receiving re t corrected, this P Status Register. In	eived parity error and e-transferred data PE bit is set to logic 1 n the FIFO mode,
		This bit is this error when its Note: Bits 2-1 i	the error flag an external card is s reset to logic 0 r is associated w associated char is the error cond	d the external card same to the value whenever the CPP with the particular ch racter is at the top of	retransmits the saved in the F J reads the contracter in the of the FIFO. a Receiver Li	e data. If the numb RNR but error is not ntents of the Line \$ FIFO it applies to.	per of receiving re t corrected, this P Status Register. In This error is reve	eived parity error and e-transferred data PE bit is set to logic 1 n the FIFO mode,
1	R	This bit is this error when its Note: Bits 2-1 i condition This bit is by the C previous the CPU the trigge received	the error flag an external card is s reset to logic (r is associated w associated char is the error cond as are detected as s the Overrun E PU before the n character. The reads the conte er level, an over in the shift regis	d the external card same to the value whenever the CPU ith the particular ch racter is at the top of itions that produce and the interrupt is rror (OE) indicator. ext character was to OE indicator is set ints of the Line Stair run error will occur	retransmits the saved in the F J reads the co- naracter in the of the FIFO. a Receiver Li- enabled. Bit 1 indicates ransferred into to logic 1 upor us Register. It only after the I to the CPU a	e data. If the numb RNR but error is not intents of the Line S FIFO it applies to. the Status interrupt that data in the Re the Receiver Buffe detection of an ov the FIFO mode da FIFO is full and the	ber of receiving re t corrected, this P Status Register. In This error is reve whenever any of ecciver Buffer Reg er Register, there verrun condition a ta continues to fil e next character h	eived parity error and e-transferred data PE bit is set to logic 1 In the FIFO mode, valed to the CPU the corresponding

Some bits in LSR are automatically cleared when CPU reads the LSR register, so interrupt handling routine should be written that if once reads LSR, then keep the value through entire the routine because second reading LSR returns just reset value.

9.6.2.11 SSR (Smart Card Status Register)

This register provides the additional state of the Smart Card interface to the CPU. In addition to this current-state information, three bits of the Smart Card Status Register provide interrupt information except Tx /Rx data interrupt (these information is in the LSR). These bits are set to logic 1 whenever a interrupt condition occurs e. They are reset to logic 0 whenever the CPU reads the MODEM Status Register. SCIxBase±0x18

		SUIND	ase+ux	0				
7	e	6	5	4	3	2	1	0
-		-	-	-	RETRANS_TO	WAITTIMEOUT	INITFAIL	CARDPRE
Bits	Туре	Function						
7		This bit is r	eserved a	t Smart	Card Interface mode			
6		This bit is r	eserved a	t Smart	Card Interface mode			
5		This bit is r	eserved a	t Smart	Card Interface mode			
4		This bit is r	eserved a	t Smart	Card Interface mode			
3		This bit ind	icate the r	etransm	nit of error data is time	out when RETRANEN(bit	6 of SMR) is set to	1.
		the externation detected by	al card and y SCI) exc	the sta eeds th	rt leading edge of pre	tween start leading edge c evious error data frame (se of WTR register. This bit is	ent by the card but pa	arity error is
2		This bit ind leading edg either by th	icates that ge of the d ie card or l	the wa ata fran by the ii	iting time out is occur ne sent by the externa nterface device) exce	s. This bit is set to '1' in th al card and the start leadir eds the waiting time value rt Card Status Register	ng edge of previous o	data frame (sent
1		This bit is s soon as thi sequence a	set to '1' wi s bit is set and the CA	nen the to '1' a ARDINI ⁻	initialization sequences of the sequence of the sequences of the sequence of t	e is fail and the ATR from s failed, the interface devic o '0' automatically. This bi	ce starts the contact	deactivation
0	-	This bit is r	eset to '1'	when th	ne external card is rer	ted and CardPresent pin i noved and CardPresent p the CARDDET interrupt	•	

9.6.2.12 SCR

This 8-bit Read/Write Register does not control the UART/Smart Card Interface in any way. It is intended as a scratchpad register to be used by the programmer to hold data temporarily.

		SCIXDase+UXIC					
7		6 5	4	3	2	1	0
DATA							
Bits	Туре	Function					
7:0	R/W	Temporary data storage					

9.6.2.13 RTR (Reset Timing Register)

On starting of contact activation sequence, the CRST remain to logic '0' waiting ATR until the number of clock cycle set in the RTR register. If the ATR is not received until that number of the clock cycle, CRST is set to logic '1' and waits for ATR during the number of clock cycle set in the RTR once more. If There is no ATR and the clock cycle elapses(the initialization of Smart Card fails) ,the contact deactivation start and the CRST is set to logic '0' The minimum value of this register is 200,so this register must be set greater than 200. SCIxBase+0x20

		00120
16	1	15 10
Clock	Cycle Numb	her set and set
CIOOK		
Bits	Туре	Function
15:0	R/W	The clock(CCLK) cycle number that is used to count the clock number during which the interface device waits for
		ATR

9.6.2.14 RNR (Retransmit Number Register)

This register value identifies the number of retransmission before Tx/Rx Line Status interrupt is activated and Line Status error occurs. The Tx/Rx Line Status interrupt occurs if the line status error is not cleared after the re-transmission of the times that is saved in this register.

If the value of this register is set to '0', no error flag is transmitted even though the Smart Card interface receives the error-ed data frame and Rx Line error status interrupt occurs immediately. If the interface device is transmit mode and receives the error flag, the interface device does not re-transmit the error-ed data frame and activates the Tx Line Status error interrupt immediately.

	SCIADase+0A24										
7		6	5	4	3	2	1	0			
Re-tra	Re-transmission Number										
Bits	Bits Type Function										

9.6.2.15 WTR (Waiting Time Register)

In the case that the interval between start leading edge of the data frame sent by the external card and the start leading edge of previous data frame (sent either by the card or by the interface device) exceeds the waiting time value of WTR register, the Waiting Timeout interrupt occurs SCIxBase+0x28

23	:	22			1	0
The nu	mber of da	ta bit period				
Bits	Туре	Function				

9.6.2.16 EGR (Extra Guard-Time Register)

This register value set the number of bit –period that follows the 12-bit data frame, and from 0 to 254. If EGR value is 255, the minimum delay between the start edges of two consecutive data frame is reduce to 11-bit period. SCIxBase+0x2C

		SCIND	13610720			
23	:	22			1	0
The nu	umber of da	ta bit period				
	Truce	E				
Bits	Туре	Function				

9.6.2.17 UCR (UART Configuration Register)

To make the Smart Card Interface mode set, SMCARDEN and UARTEN are set to '1' at the same time.

		UxBase+0x30					
7	6	5	4	3	2	1	0
-		SMCARDEN	CLOCKSEL	SIR Loop Back Uart4 only	Full Duplex Force Uart4 only	SIREN Uart4 only	UARTEN
Bits	Туре	Function					
7:6	-	Reserved					
5	R/W	Smart Card Interface mod	le set				
		0 = Smart Card interface	disable				
		1 = Smart Card interface					
		(If you use Smart Card In	terface function, you	u must set this bit	with UARTEn bit	at the same time)	
4	R/W	Clock Select					
		0 = 3.6864MHz					
	DAA	1 = 3.5712MHz	4 1 1				
3	R/W	SIR Loop-back Test (Uart	• /				
		0 = SIR Loop-back Test d 1 = SIR Loop-back Test e					
2	R/W	SIR Full-duplex Force (Ua					
2	11/11	0 = Half Duplex.	arti only)				
		1 = Full Duplex.					
1	R/W	SIR Enable (Uart1 only)					
		0 = SIR Mode disable					
		1 = SIR Mode enable (If y	rou use SIR functior	n, you must set thi	s bit with UARTE	n bit at the same	time).
0	R/W	UART Enable.					
		0 = UART disable (Power	-Down), UART Cloo	ck stop.			
		1 = UART enable.					

9.6.3 Smart Card Interface Operation Flow Chart

Before transmitting or receiving data, the smart card interface and Smart Card must be initialized as described in figure 9-4, after performing Contact initialization and ATR receiving, the configuration of Smart Card Interface must be change to meet the condition of ATR as describe in figure 9-5.

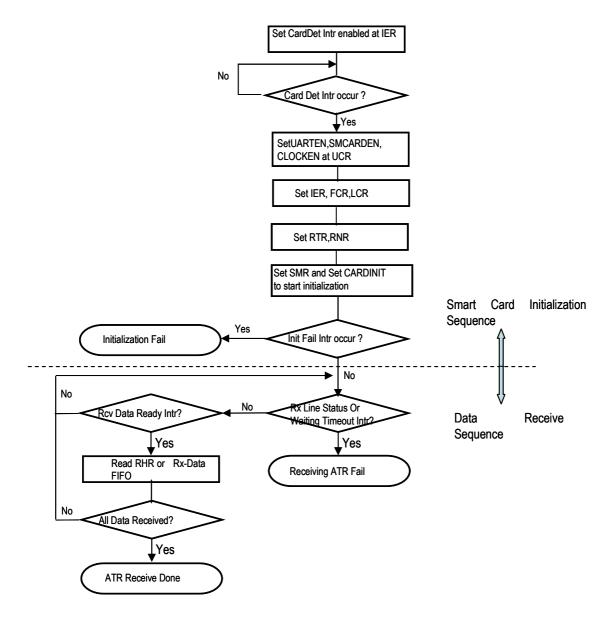


Figure 9-2 Card Initialization and Receiving ATR Flow Chart

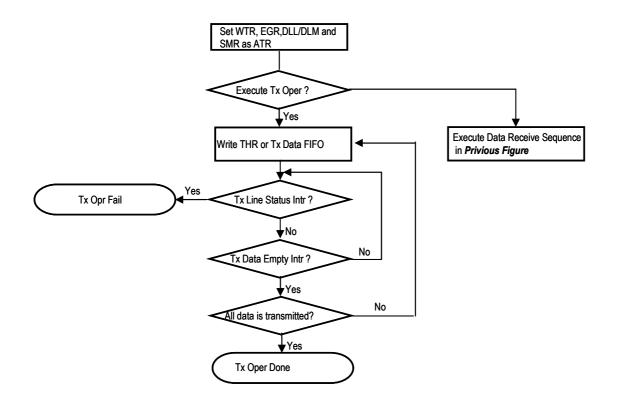


Figure 9-3 Data Transmission and Reception Flow Chart

9.7 Synchronous Serial Interface (SSI)

The HMS30C7210 includes two SSIs (Synchronous Serial Interface) that are AMBA slave blocks connecting to the APB. The SSI is a master or slave interface that enables synchronous serial communication with an external slave or master peripheral. The SSI only supports a Motorola SPI-compatible interface that features full-duplex, three-wire synchronous transfers and programmable clock polarity and phase. In both master and slave configurations, the SSI performs parallel-to-serial conversion on data written to a 8-bit wide, 8-location deep transmit FIFO and serial-to-parallel conversion on received data, buffering it in a 8-bit wide, 8-location deep receive FIFO. Figure 9-23 shows a block diagram of the SSI.

FEATURES

- Master or slave operation
- Motorola SPI-compatible synchronous serial interface
- Programmable transfer clock bit rate, clock polarity and phase
- Separate transmit and receive FIFO buffers, 8 bits wide, 8 locations deep
- 8-bit data frame size
- Full-duplex, 3-wire synchronous transfers
- Independent masking of transmit FIFO, receive FIFO and receive overrun interrupts
- Internal loop-back test mode available

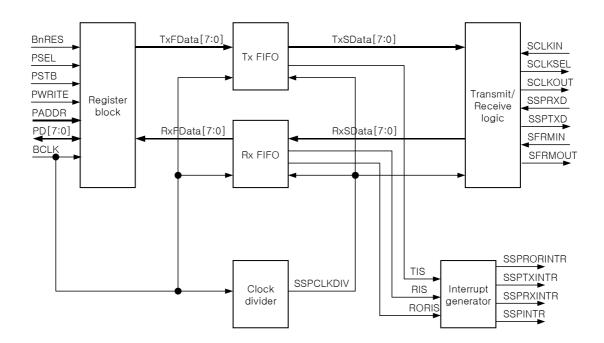


Figure 9-23. SSI Block Diagram

9.7.1 Register description

The SSIBASE is 0x8005A000 for SSI0 and 0x8005B000 for SSI1.

Note Marked '-' bits in the following tables are reserved bits and return zeros on reads.

9.7.1.1 SSPCR0 (control register 0)

7	6	6 5	4	3	2	1	0
-	-		GSEL	SDIR	SPH	SPO	MS
Bits	Туре	Function					
4	R/W	nSFRMIN/OUT selec					
		0 : nSFRMIN = 0 (SD 1 : nSFRMIN = GPIO	<i>,,</i> 1	(/		
3	R/W	SCLKIN/OUT nSFRM	1 \ /!	p	. (02		
		The reset value of SE	OIR bit is zero (input).	If MS bit is used	to indicate the di	rection instead of	SDIR, bus cor
		may occur.					
		0 = input (SCLKIN, n	1)				
		1 = output (SCLKOU	,	/			
2	R/W	SCLKIN input phase	· /		· · ·		
		0 = SCLKIN/OUT sta	rts toggling at the mid	ddle of the data tra	ansfer.		
		1 = SCLKIN/OUT sta	rt toggling at the begi	inning of the data	transfer.		
1	R/W	SCLKIN input polarity	(MS=1) and/or SCL	KOUT output pola	arity (MS=0)		
		0 = The inactive state	of SCLKIN/OUT is L	.OW.			
		1 = The inactive state	of SCLKIN/OUT is H	HIGH.			
0	R/W	Master or Slave select	x				
0		0 = Configured as a r	naster				
0							

9.7.1.2 SSPCR1 (Control Register 1)

SSIBASE + 0x04	(initial value 8'bxxxx	0000)	
331DA3E + UXU4		0000)	

7		6	5	4	3	2	1	0
-		-	-	-	SSE	RORIE	TIE	RIE
Bits	Туре	Function						
3	R/W	SSE : SSI 0 = SSI dis 1 = SSI ena	abled					
2	R/W	0 = Receive Wr	e over-run i iting '0' to th	r-Run Interrupt Ena hterrupt disabled his bit will also clea hterrupt enabled		PICR		
1	R/W	TIE : Tx FIF 0 = Tx FIF0 1 = Tx FIF0) interrupt o	lisabled				
0	R/W	RIE : Rx FI 0 = Rx FIF(1 = Rx FIF(D interrupt o	lisabled				

9.7.1.3 SSPDR (Data Register)

SSPDR is the data register and is 8-bit wide. When SSPDR is read, the entry in the receive FIFO pointed to by the current FIFO read pointer is accessed. When SSPDR is written to, the entry in the transmit FIFO pointed to by the write pointer is written to.

SSIBA	SE + 0x0	8 (init	ial value 8'bxxxx_	_xxxx)					
	7		6	5	4	3	2	1	0
	FIF07		FIFO6	FIFO5	FIFO4	FIFO3	FIFO2	FIF01	FIFO0
	Bits	Туре	Function						
	7:0	R/W	Transmit/R	eceive FIFO					
			Read – Rea	ceive FIFO					
			Write – Tra	nsmit FIFO					

9.7.1.4 SSPSR (Status Register)

SSIBA

ASE + 0x	0c (Rea	ad-only register)							
7		6	5	4	3	2	1	0	
-		-	-	BSY	RFF	RNE	TNF	TFE	
Bits	Туре	Function							
4	R	BSY : SSI	Busy						
		0 = SSI is i	dle or is trar	sferring MSB (FIFC	D [7])				
		1 = SSI is t	ransferring	frame FIFO[6:0], no	t MSB				
3	R	RFF : Rece	eive FIFO Fi	III					

		0 = Rx FIFO is not full
		1 = Rx FIFO is full
2	R	RNE : Receive FIFO Not Empty
		0 = Rx FIFO is empty
		1 = Rx FIFO is not empty
1	R	TNF : Transmit FIFO Not Full
		0 = Tx FIFO is full
		1 = Tx FIFO is not full
0	R	TFE : Transmit FIFO Empty
		0 = Tx FIFO is not empty
		1 = Tx FIFO is empty

9.7.1.5 SSPCSR (Clock Scale Register)

SSPCSR specifies the division factor by which the input BCLK should be internally divided to make SCLKOUT.

IBASE + 0x	10 (init	ial value 8'bxxxx_	_xxx0)					
7		6	5	4	3	2	1	0
CSR7		CSR6	CSR5	CSR4	CSR3	CSR2	CSR1	CSR0
Bits	Туре	Function						
7:0	R/W	Clock divis	or scale					
		Should be	an even numb	er from 2 to 254 c	on writes.			
		The least s	ignificant bit a	lways returns zero	o on reads.			

9.7.1.6 SSPIIR/SSPICR (Interrupt Status/Clear Register)

7		6	5	4	3	2	1	0
-		-	-	-	-	RORIS	TIS	RIS
Bits	Туре	Function						
2	R/W			nterrupt status/cle	ear register			
		Write 0 –	No effect					
		Write 1 –	Clears this b	it				
		Read 0 –	No Rx over-	un interrupt state	1			
				interrupt state				
		Writing 0	to RORIE bit	will also clear RC	ORIS bit			
1	R/W	TIS : Tx ir	nterrupt statu	s/clear register				
		Write 0 –	No effect					
		Write 1 –	Clears this b	it				
		Read 0 –	No Tx interru	ipt state				
		Read 1 –	Tx interrupt :	state				
0	R/W	RIS : Rx i	nterrupt statu	is/clear register				
		Write 0 -	No effect	-				
		Write 1 –	Clears this b	it				
		Read 0 –	No Rx interro	upt state				
			Rx interrupt	•				

9.7.1.7 SSPFENT (FIFO Entry number)

SSIBASI	E + 0x	18 (in	itial value 8'b0000	0_0000)					
7			6	5	4	3	2	1	0
T)	XENT3	}	TXENT2	TXENT1	TXENT0	RXENT3	RXENT2	RXENT1	RXENT0
Bi	its	Туре	Function						
7:4	:4	R	The numbe	r of valid entries i	n transmit FIFO				

9.7.1.8 SSPIENT (FIFO Entry Interrupt number)

The number of valid entries in receive FIFO

SSIBASE + 0x1c (initial value 8'b0100_0100)

3:0

R

7		6	5	4	3	2	1	0
TXIEN	Т3	TXIENT2	TXIENT1	TXIENT0	RXIENT3	RXIENT2	RXIENT1	RXIENT0
Bits	Туре	Function						
7:4	R/W	0xf – 0x9 0x8	: TIS is never se : TIS is a TIS is set when	and enables progr et. lways set TXENT <= TXIEN t when TXENT > 1	т.	y the number at w	rhich TIS is set.	
3:0	R/W	0xf – 0x9	: RIS is never s RIS is set when R	and enables progr et. RXENT >= RXIEN IS is not set when Ilways set	IT	,	hich RIS is set.	

9.7.1.9 SSPTCER (Test Clock Enable Register)

5A3L + 0.4	0-0x7c	(initial value 8'b	_ /				_	
7		6	5	4	3	2	1	0
TCE7		TCE6	TCE5	TCE4	TCE3	TCE2	TCE1	TCE0
Bits	Туре	Function						
7:0	R/W		Enable. Actually en in registered	•	t clock enable is	produced		

SSPTCER has a multiple word space in the register address map to allow for the generation of multiple test clock enable pulses.

9.7.1.10 SSPTCR (Test Control Register)

SSIBASE + 0x80 (initial value 8'bxxx0_0000)

R/W	Function TINPSEL : Test Input 0 = Normal input is se 1 = Values from SSP1 TRESET : Test Reset	lected TSR is multiplexed	TRESET	REGCLK	TCLKEN	TESTEN
R/W	TINPSEL : Test Input 0 = Normal input is se 1 = Values from SSPT TRESET : Test Reset	lected TSR is multiplexed	into input			
	0 = Normal input is se 1 = Values from SSPT TRESET : Test Reset	lected TSR is multiplexed	into input			
	TRESET : Test Reset		into input			
			into input			
	0 = No test reset	rtad throughout the	CCI avaant for toot -	aiotoro		
	1 = nSSPRST is asse		SSI exception test re	ะนารเยาร		
	•	I MODE CIOCK				
R/W	TCLKEN : Test Clock	Enable				
,	0 = Normal operating 1 = Test mode is selec	mode is selected				
EGCLK	TCI KEN	TESTEN	SCLKIN/OUT	BCI	к	
LOOLI	1					
	0	-	°			
7	R/W R/W	See table below. X/W TCLKEN : Test Clock See table below. TESTEN : Test Mode 0 = Normal operating 1 = Test mode is select See table below. See table below.	TCLKEN : Test Clock Enable See table below. R/W TESTEN : Test Mode Enable 0 = Normal operating mode is selected 1 = Test mode is selected See table below. EGCLK TCLKEN TESTEN 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1	See table below. RW TCLKEN : Test Clock Enable See table below. RW TESTEN : Test Mode Enable 0 = Normal operating mode is selected 1 = Test mode is selected See table below. EGCLK TCLKEN TESTEN SCLKIN/OUT 1 1 Registered clock 0 1 Divided clock 0 1 Strobe clock	See table below. RW TCLKEN : Test Clock Enable See table below. RW TESTEN : Test Mode Enable 0 = Normal operating mode is selected 0 = Normal operating mode is selected See table below. EGCLK TCLKEN TESTEN SCLKIN/OUT BCI EGCLK TCLKEN TESTEN SCLKIN/OUT BCI 1 1 Registered clock Registered clock Registered clock 0 1 Registered clock Registered clock BCI 1 1 Divided clock Registered clock BCI	See table below. RIVW TCLKEN : Test Clock Enable See table below. RIVW TESTEN : Test Mode Enable 0 = Normal operating mode is selected 1 = Test mode is selected See table below. EGCLK TCLKEN TESTEN SCLKIN/OUT BCLK EGCLK 1 1 Registered clock Registered clock 0 1 Registered clock BCLK 1 1 Divided clock Registered clock 0 1 Strobe clock BCLK

Registered clock : generates a test clock enable on an APB access only to the SSPTCER Strobe clock : generates a test clock enable on every AMBA APB access to the block Divided clock : generates a normal mode SCLKIN/OUT by dividing BCLK

9.7.1.11 SSPTMR (Test Mode Register)

7	(6 5	4	3	2	1	0
-	-		-	-	-	NIBMODE	LBM
Bits	Туре	Function					
1	R/W	Nibble Mode Counte	r				
		0 = Normal CSR cou	nter (CSC) mode				
			()	two nibbles (3-b	it, 4-bit) and decre	ments by 0x11 on succ	cessive clocks
0	R/W	Loop Back Mode		,			
0	R/W		1	X	·		

9.7.1.12 SSPTISR (Test Input Stimulus Register)

SSPTISR provides test mode stimulus for the SCLKIN and SCLKIN input to the SSI. When TINPSEL bit in the SSPTCR register is 1, the values in the SSPTISR are routed to the internal lines.

SSIBASE + 0x88 (initial value 8'bxxxx_xxx)

7	6	5	4	3	2	1	0			
-	-	-	-	-	nTSFRMIN	TSCLKIN	TSSPRXD			
Bits	Туре	Function								
2	R/W	Test nSFRMIN inpu	It for nSFRMIN pin							
1	R/W	Test SCLKIN input	Test SCLKIN input for SCLKIN pin							
•	R/W	Test SSPRXD inpu								

9.7.1.13 SSPTOCR (Test Output Capture Register)

7	6	5	4	3	2	1	0
-	RORIN	rr txintr	RXINTR	INTR	SSPTXD	nSFRMOUT	SCLKOU
Bits	Туре	Function					
6	R	SSPRORINTR is g 0 = SSPRORINTR	s the status of SSPR generated by RORIS pin is driven to logic pin is driven to logic	ANDed with ROF	RIE		
5	R	SSPTXINTR is ge 0 = SSPTXINTR p	he status of SSPTXI nerated by TIS ANDe in is driven to logic 0 in is driven to logic 1	ed with TIE			
4	R	SSPRXINTR is ge 0 = SSPRXINTR p	the status of SSPRX nerated by RIS AND in is driven to logic 0 in is driven to logic 1	ed with RIE			
3	R	INTR : returns the 0 = SSPINTR pin i 1 = SSPINTR pin i	v				
2	R	SSPTXD : returns 0 = SSPTXD pin is 1 = SSPTXD pin is	0	D			
1	R	0 = nSFRMOUT p	rns the status of nSF in is driven to logic 0 in is driven to logic 1	RMOUT			
0	R	002110011101011	is the status of SCLK is driven to logic 0	OUT			

9.7.1.14 SSPTCCR (Test Clock Counter Register)

This register provides observation for the clock scale counter. The counter is 7-bit, free-running, down counter that operates on BCLK, in normal mode of operation. It can be configured as two nibbles and decremented by test clocks in test mode through SSPTMR and SSPTCR registers. The seven most significant bits programmed in the 8-bit SSPCSR register form the reload value for this counter. The counter reloads when it reaches 0x01.

SSIBASE + 0x90 (initial value 8'bx000_0001)

7	6	5	4	3	2	1	0
-	CSC6	CSC5	CSC4	CSC3	CSC2	CSC1	CSC0

Bits	Туре	Function
6:0	R	This bits return the current count of the clock scale counter

9.7.2 Overview

The SSI performs parallel-to-serial conversion on data to transmit to an external device and serial-to-parallel conversion on data to receive from an external device. The transmit and receive paths are buffered with internal FIFO memories allowing up to eight 8-bit values to be stored independently.

The SSI includes a programmable bit rate clock divider to generate the serial output clock SCLKOUT from the bus clock BCLK when configured as a master. The frequency of BCLK is 30MHz (FCLK/2) and it is divided, through the SSPCSR register, by a factor of from 2 to 254 in steps of two. When configured as a slave, the SCLKIN clock is provided by an external master and used to time its transmission and reception sequences.

There are four interrupts generated by the SSI and three of these are individual, maskable, active HIGH interrupts:

SSPTXINTR : active when the number of valid entries in the transmit FIFO is equal to or less than the predetermined number specified by RXIENT.

SSPRXINTR : active when the number of valid entries in the receive FIFO is equal to or more than the predetermined number specified by TXIENT.

SSPRORINTR : active when the receive FIFO is already full and an additional data frame is received.

Above three individual interrupts are also combined into a single output interrupt signal (SSPINTR). The combined SSPINTR is asserted if any of the three individual interrupts are asserted and enabled.

There are registers and logic for functional block verification, and manufacturing or production test using TIC vectors. Test registers should not be read or written to during normal use.

9.7.3 Operational Description

The SSI is reset by nSSPRST and it is generated by the global reset signal BnRES or the test reset signal in SSI test mode. An external reset controller must use BnRES to reset the whole SSI including test logic. The test reset signal resets SSI registers except for test mode registers.

Following the reset, the SSI is disabled and should be configured in this state. Control register SSPCR0 need to be programmed to decide several operation parameters. GSEL bit determines whether nSFRMIN signal from the GPIO is used in slave mode. If GSEL bit is cleared, the SSI regards nSFRMIN signal as zero and transfers are synchronized only with SCLKIN clock signal. If GSEL bit is set, nSFRMIN signal from a GPIO pin is used to indicate valid SCLKIN period and transfers are synchronized with SCLKIN when nSFRMIN is zero. In master mode, GSEL bit has no effects and nSFRMOUT signal to a GPIO pin is always valid. SDIR bit is used to determine the direction of nSFRMIN/OUT and SCLKIN/OUT pins in the GPIO. When SDIR bit is set, the direction is output and nSFRMOUT and SCLKOUT signals go out through GPIO pins. MS bit configures the SSI as a master or slave and SPH and SPO bits determine clock phase and polarity respectively.

When master, the bit rate requires the programming of the clock scale register SSPCSR. The SSPCR1 has SSI enable (SSE) and interrupts enable bits. When disabled in master mode, SCLKOUT is forced to LOW (SPO=0) or HIGH (SPO=1), nSFRMOUT to HIGH, and SSPTXD to LOW. When disabled in slave mode, SCLKIN, nSFRMIN and SSPRXD has no meanings and SSPTXD is set to LOW. Once enabled, transmission and reception of data begins on transmit (SSPTXD) and receive (SSPRXD) pins.

NOTE : When nSFRMIN/OUT signal from/to a GPIO pin is not connected, SDIR and SPO bits in a master should be configured before a slave is enable. Otherwise, the transition of SCLKOUT generated by setting CDIR and/or SPO in the master may cause the slave into malfunctioning. In this case, the recommended sequence of register setup is following. SSPCR0 register in a master should be configured first. Then SSPCR0 in a slave is set and a slave SSI is enabled. The master is enabled last.

Once the bottom entry of the transmit FIFO in a master contains data, nSFRMOUT is active to LOW to indicate valid data frame and the MSB of the 8-bit data frame is shifted out onto the SSPTXD pin. Then, SCLKOUT pin starts running and the serial data bit through SSPRXD is captured in the receive FIFO. After the LSB of the current data frame is shifted out, if there is no more valid entry in the transmit FIFO, SCLKOUT stops toggling and nSFRMOUT is inactive to indicate the completion of the transfer. Otherwise, any valid entries in the transmit FIFO enables another data frame transfer to be continued without delay. Figure 9-7. shows the frame format for a single frame and Figure 9-8. shows the timing diagram when back to back frames are transmitted.

If the receive FIFO is already full and the transmit FIFO is not empty in master mode, a transfer will start but this transfer will cause receive overrun interrupt condition. In this case, a transmit data frame is read from the transmit FIFO and transferred, and a received data frame is overwritten in the receive serial shift buffer normally. But, data in the receive serial buffer will not be stored in the receive FIFO, if the receive FIFO is still full until this transfer finishes. If RORIE bit is set for the receive overrun condition, SSPRORINTR will signal and further data frame will not start until RORIS bit is cleared. In case of slave mode, the operation is the same except that a data frame starts with SCLKIN from external device.

If the transmit FIFO is already empty and another data frame is request in slave mode, a transmit FIFO underrun condition occurs. The receive FIFO operates normally but

transmit FIFO transfers the same data frame as in the previous transfer. This condition cannot occur in master mode. In this version of SSI, there is not an assigned interrupt for this case.

If CPU writes data to the transmit FIFO that is already full, the valid entries (from the oldest entry that was written) in the FIFO can be overwritten. To detect this erroneous state, TXENT bits can be read. If TXENT[3:0] is in the range of from 0x9 to 0xf, the number of lost entries is TXENT - 0x8.

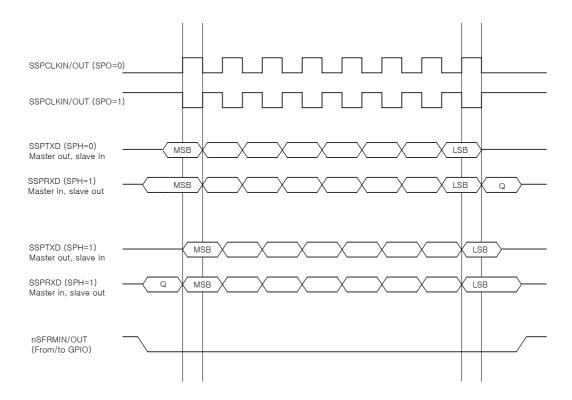
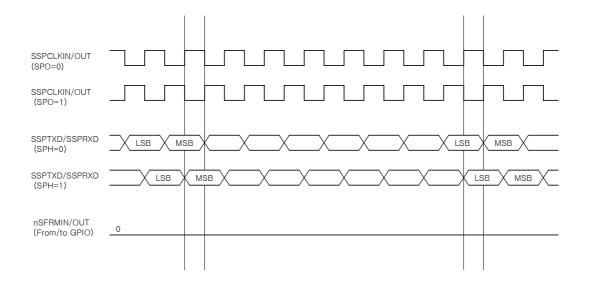
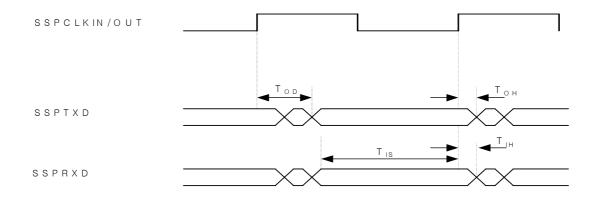



Figure 9-24. Transfer Format (Single Transfer)

Figure 9-25. Transfer Format (Back to Back Transfer)


If CPU reads data from the receive FIFO that is already empty, invalid entries in the receive FIFO can be read. By reading RXENT bits, this erroneous state can be detected. If RXENT[3:0] is in the range of from 0x9 to 0xf, the number of entries that has been read by mistake is 0x10 – RXENT.

Note

This version of the SSI supports neither multi-master nor multi-slave configurations.

9.7.4 SSI AC Timming

Sym bol	Description	Min.	Мах
TOD	Output Delay from clock to TXD	-	3 n s
тон	Output Hold time from clock to TXD	1 n s	-
TIS	RXD Input Setup Time	3 n s	-
тін	RXD Input Hold Time	0.5 n s	-

Figure 9-4 SSI AC Timing

9.8 SMC Controller

This SmartMedia™ Card Controller is an Advanced Microcontroller Bus Architecture (AMBA) compliant System-on-a-Chip peripheral providing an interface to industrystandard SmartMedia™ Flash Memory Card. A channel has 8 control signal outputs and 8 bits of bi-directional data ports.

FEATURES

- One 3.3V SmartMedia support
- 4MB to 128MB media (both Flash and Mask ROM type)
- Interrupt mode support when erase/write operation is finished
- Unique ID SmartMedia support
- Multi-page (up to 32 pages) access (read/write)
 Hardware 3Byte ECC generation & check (software correctable).
- Marginal timing operation settable.

9.8.1 External Signals

Pin Name	Туре	Description
SMD [7:0]	I/O	Smart Media Card (SSFDC) 8bit data signals
nSMWP	0	Smart Media Card (SSFDC) write protect
nSMWE	0	Smart Media Card (SSFDC) write enable
SMALE	0	Smart Media Card (SSFDC) address latch enable
SMCLE	0	Smart Media Card (SSFDC) command latch enable
nSMCD	I	Smart Media Card (SSFDC) card detection signal
nSMCE	0	Smart Media Card (SSFDC) chip enable
nSMRE	0	Smart Media Card (SSFDC) read enable
nSMRB	I	Smart Media Card (SSFDC) READY/nBUSY signal. This is open-drain output so it requires a pull- up resistor.

Refer to Figure 2-1. 208 Pin diagram.

9.8.2 Registers

Address	Name	Width	Default	Description
0x8005.C000	SMCCMD	32	0x0	SmartMedia Card Command register
0x8005.C004	SMCADR	27	0x0	SmartMedia Card Address register
0x8005.C008	SMCDATW	32	0x0	Data written to SmartMedia Card
0x8005.C00C	SMCDATR	32	0x0	Data received from SmartMedia Card
0x8005.C010	SMCCONF	8	0x0	SmartMedia Card controller configuration register
0x8005.C014	SMCTIME	20	0x0	Timing parameter register
0x8005.C01C	SMCSTAT	32	0x0	SmartMedia Card controller status register
0x8005.C024	SMCECC1	24	0x0	ECC register for first half page data
0x8005.C028	SMCECC2	24	0x0	ECC register for second half page data
0x8005.C02C	SMCMRW	12	0x0	Multi-page read/write configuration register
0x8005.C030	SMCMSTAT	12	0x0	Multi-page read/write status register
0x8005.C034	SMCEBICON	3	0x0	SMC control register using EBI interface

Table 9-12 SmartMedia Controller Register Summary

9.8.2.1 SMC Command Register (SMCCMD)

0x8005	C000
0,0000	.0000

31	30	29	28	27		26	25	24	23	22	21	20	19	18	17	16
Hidden	n Comma	nd 0							Hidden	Comma	nd 1					
15	14	13	12	11		10	9	8	7	6	5	4	3	2	1	0
Main C	Command								Secon	d Comma	and					
Bits	Туре	Fu	inction													
31:24	R/W	to co	prevent mmand	illegal o to acce	cop ess i	y of mu redund	nique ID f Isic files. I ant block d. For mo	Jnique II that can	D is put ir not be ac	ito redun cessed v	dant bloo vith open	k of Sma commar	artMedia nd, This b	Use thi oyte filed	is hidde	n
23:16	R/W	Hi	dden Co	mmano	11	Road I	Doommo	nd rotur	nc whoth	er the Sn	nartMedi	a card su	innorte il	niaue IF) or not	Hidden
			step com	mand	for \$	Samsu	ng is 30h- t commar	65h and	for Toshi	ba is 5Ał	n-B5h. To					
15:8	R/W	re Th 1 ^s	step com dundant ere are s r comma	imand f block a 9 comn and into	for s area nan o thi	Samsu , Rese ds to o s byte t	ng is 30h-	65h and id (FFh) nartMedi pt writing	for Toshi should be a card. T to Smar	ba is 5Al carried his contro tMedia. F	n-B5h. To out. oller supp or write	o return b ports only operation	v parts of	ser block	k after a	e). Set
15:8	R/W	re Tř 1 ^s In	step com dundant ere are s r comma	imand f block a 9 comn and into	for s area nan o thi	Samsu <u>, Rese</u> ds to o s byte t econd	ng is 30h- t commar perate Sn field exce	65h and <u>id (FFh)</u> nartMedi pt writing d byte fie	for Toshi should be a card. The to Smar ald to Pag	ba is 5Al carried his contro tMedia. F	n-B5h. To out. oller supp or write m (10h).	o return b ports only operation	y parts of , set this	ser block	k after a	ccessino e). Set erial Data
15:8	R/W	re Tř 1 ^s In Fu	step com dundant ere are s r comma out (80h)	imand f block a 9 comn and into and se	for s area nan o thi et S	Samsu , Rese ds to o s byte t econd	ng is 30h- t <u>commar</u> perate Sn field exce Comman	65h and <u>id (FFh)</u> nartMedi pt writing d byte fie	for Toshi should be a card. The to Smar ald to Pag	ba is 5Al carried nis contro tMedia. F e Progra	n-B5h. To out. oller supp for write m (10h). tion	o return b ports only operation	y parts of , set this	ser block f them (t s byte fie cycle	k after a pold type eld to Se	ccessino e). Set erial Data
15:8	R/W	re Th 1 ^s In Fu Se	step com dundant ere are s t comma but (80h) inction	imand f block a 9 comn and into and se	for s area nan o thi et S	Samsun , Rese ds to o s byte t econd	ng is 30h- t commar perate Sn field exce Comman 1 ST cycle	65h and <u>id (FFh)</u> nartMedi pt writing d byte fie	for Toshi should be a card. The to Smar ald to Pag	ba is 5Al carried his contro tMedia. F e Progra Func Page	n-B5h. To out. oller supp or write m (10h).	o return b ports only operation	y parts of n, set this 1 ST (ser block f them (t s byte fie cycle	k after a pold type eld to Se	ccessino e). Set erial Data
15:8	R/W	re Th 1 ^s In Fu Se Re	step com dundant ere are s r comma but (80h) nction erial Data	imand f block a 9 comn and into and se	for s area nan o thi et S	Samsu <u>, Rese</u> ds to o s byte t econd	ng is 30h- t commar perate Sn field exce Comman 1 ST cycle 80h	65h and <u>id (FFh)</u> nartMedi pt writing d byte fie	for Toshi should be a card. The to Smar ald to Pag	ba is 5Al carried his contro tMedia. F e Progra Func Page Bloc	n-B5h. To out. oller supp for write m (10h). tion	o return b ports only operation	y parts of y parts of n, set this 1 ST 0 10h	ser block f them (h s byte fie cycle	k after a pold type eld to Se	ccessing e). Set erial Data ycle
15:8	R/W	re Th 1 ^S In Fu St R	step com dundant ere are 9 ^T comma but (80h) unction erial Data ead 0	imand f block a 9 comn and into and se	for s area nan o thi et S	Samsu I, Rese ds to o s byte t econd	ng is 30h- t commar perate Sn field exce Comman ^{1ST} cycle 80h 00h	65h and <u>id (FFh)</u> nartMedi pt writing d byte fie	for Toshi should be a card. The to Smar ald to Pag	ba is 5Al carried his contro tMedia. F e Progra Func Page Bloc	n-B5h. To out. Oller supp for write m (10h). tion Program c Erase is Read	o return b ports only operation	y parts of n, set this <u>1ST 0</u> 10h 60h	ser block f them (t s byte fie cycle	k after a pold type eld to Se	ccessing e). Set erial Data ycle
15:8	R/W	re Th 1º In Fu Si Ri Ri Ri Ri	step com dundant ere are 9 r comma but (80h) unction erial Data ead 0 ead 1	imand f block a 9 comn and into and se	for s area nan o thi et S	Samsu I, <u>Rese</u> ds to o s byte f econd	ng is 30h- t comman perate Sn field exce Comman 1 ST cycle 80h 00h 01h	65h and <u>id (FFh)</u> nartMedi pt writing d byte fie	for Toshi should be a card. The to Smar ald to Pag	ba is 5Al carried nis contro tMedia. F e Progra Func Page Blocl Statu	n-B5h. To out. Oller supp for write m (10h). tion Program c Erase is Read	o return b ports only operation	y parts of n, set this 1 ST (10h 60h 70h	ser block f them (t s byte fie cycle	k after a pold type eld to Se	ccessing e). Set erial Data ycle

9.8.2.2 SMC Address Register (SMCADR)

	0x8005	5.C004											
			26	25	24	23	22	21	20	19	18	17	16
			SMC	SMCADR26 ~ SMCADR16									
14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
DR15 ~ \$	SMCADR0												
Туре	Function												
	must be se controller a	t to SMC	CMD be	efore writii ICCMD b	ng to SM ecause	/ICADR. H	lowever, ot require	, reset ar e an add	nd status Iress.				
	8 MB	SM SM	CADR0 CADR0	~ SMCAI ~ SMCAI	DR22								
	DR15 ~ S	14 13 12 DR15 ~ SMCADR0 Type Function R/W SMC Address controller a Following to SMC Address controller a Fo	14 13 12 11 DR15 ~ SMCADR0 Type Function R/W SMC Address. SMC must be set to SMC controller after writin Following table show MODEL VALID F 4 MB SM 8 MB SM	Type Function Type Function R/W SMC Address. SMC control must be set to SMCCMD be controller after writing to SM Following table shows valid MODEL VALID PAGE A 4 MB SMC ADRO	26 25 SMCADR26 ~ 1 3 14 13 12 11 10 9 DR15 ~ SMCADR0 3 3 3 3 3 3 Type Function R/W SMC Address. SMC controller begins must be set to SMCCMD before writin controller after writing to SMCCMD be Following table shows valid address in MODEL MODEL VALID PAGE ADDRESS 4 MB SMCADR0 ~ SMCAI 8 MB	26 25 24 SMCADR26 ~ SMCAD 14 13 12 11 10 9 8 DR15 ~ SMCADR0 Type Function R/W SMC Address. SMC controller begins to oper must be set to SMCCMD before writing to SM controller after writing to SMCCMD because Following table shows valid address range at MODEL VALID PAGE ADDRESS 4 MB SMCADR0 ~ SMCADR21 8 MB SMCADR0 ~ SMCADR21	26 25 24 23 SMCADR26 ~ SMCADR16 14 13 12 11 10 9 8 7 DR15 ~ SMCADR0 Type Function R/W SMC Address. SMC controller begins to operate after v must be set to SMCCMD before writing to SMCADR. H controller after writing to SMCCMD because they do not Following table shows valid address range according to MODEL MODEL VALID PAGE ADDRESS 4 MB SMCADR0 ~ SMCADR21 8 MB SMCADR0 ~ SMCADR22	26 25 24 23 22 SMCADR26 ~ SMCADR16 14 13 12 11 10 9 8 7 6 DR15 ~ SMCADR0 Type Function R/W SMC Address. SMC controller begins to operate after writing an must be set to SMCCMD before writing to SMCADR. However, controller after writing to SMCCMD because they do not require Following table shows valid address range according to Smarth MODEL MODEL VALID PAGE ADDRESS 4 MB SMCADR0 ~ SMCADR21 8 MB SMCADR0 ~ SMCADR22	26 25 24 23 22 21 SMCADR26 ~ SMCADR16 SMCADR26 ~ SMCADR16 SMCADR26 ~ SMCADR16 SMCADR26 SMCADR26 SMCADR16 SMCADR26 SMCADR22 SMCADR2 SMCADR2 <td< th=""><th>26 25 24 23 22 21 20 SMCADR26 ~ SMCADR16 SMCADR26 ~ SMCADR16 Image: Constraint of the second seco</th><th>26 25 24 23 22 21 20 19 SMCADR26 ~ SMCADR16 14 13 12 11 10 9 8 7 6 5 4 3 DR15 ~ SMCADR0 Type Function R/W SMC Address. SMC controller begins to operate after writing an address to SMCADR. H must be set to SMCCMD before writing to SMCADR. However, reset and status read con controller after writing to SMCCMD because they do not require an address. Following table shows valid address range according to SmartMedia card size. MODEL VALID PAGE ADDRESS 4 MB SMCADR0 ~ SMCADR21 8 MB SMCADR0 ~ SMCADR22</th><th>26 25 24 23 22 21 20 19 18 14 13 12 11 10 9 8 7 6 5 4 3 2 DR15 ~ SMCADR0 Function R/W SMC Address. SMC controller begins to operate after writing an address to SMCADR. Hence a variant with the set to SMCCMD before writing to SMCADR. However, reset and status read commands controller after writing to SMCCMD because they do not require an address. Following table shows valid address range according to SmartMedia card size. MODEL VALID PAGE ADDRESS 4 MB SMCADR0 ~ SMCADR21 8 MB SMCADR0 ~ SMCADR22</th><td>26 25 24 23 22 21 20 19 18 17 SMCADR26 ~ SMCADR16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DR15 ~ SMCADR0 Type Function R/W SMC Address. SMC controller begins to operate after writing an address to SMCADR. Hence a valid commust be set to SMCCMD before writing to SMCADR. However, reset and status read commands activate controller after writing to SMCCMD because they do not require an address. Following table shows valid address range according to SmartMedia card size. MODEL VALID PAGE ADDRESS MB SMCADR0 ~ SMCADR2 MODEL VALID PAGE ADDRESS 4 MB SMCADR0 ~ SMCADR2</td></td<>	26 25 24 23 22 21 20 SMCADR26 ~ SMCADR16 SMCADR26 ~ SMCADR16 Image: Constraint of the second seco	26 25 24 23 22 21 20 19 SMCADR26 ~ SMCADR16 14 13 12 11 10 9 8 7 6 5 4 3 DR15 ~ SMCADR0 Type Function R/W SMC Address. SMC controller begins to operate after writing an address to SMCADR. H must be set to SMCCMD before writing to SMCADR. However, reset and status read con controller after writing to SMCCMD because they do not require an address. Following table shows valid address range according to SmartMedia card size. MODEL VALID PAGE ADDRESS 4 MB SMCADR0 ~ SMCADR21 8 MB SMCADR0 ~ SMCADR22	26 25 24 23 22 21 20 19 18 14 13 12 11 10 9 8 7 6 5 4 3 2 DR15 ~ SMCADR0 Function R/W SMC Address. SMC controller begins to operate after writing an address to SMCADR. Hence a variant with the set to SMCCMD before writing to SMCADR. However, reset and status read commands controller after writing to SMCCMD because they do not require an address. Following table shows valid address range according to SmartMedia card size. MODEL VALID PAGE ADDRESS 4 MB SMCADR0 ~ SMCADR21 8 MB SMCADR0 ~ SMCADR22	26 25 24 23 22 21 20 19 18 17 SMCADR26 ~ SMCADR16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DR15 ~ SMCADR0 Type Function R/W SMC Address. SMC controller begins to operate after writing an address to SMCADR. Hence a valid commust be set to SMCCMD before writing to SMCADR. However, reset and status read commands activate controller after writing to SMCCMD because they do not require an address. Following table shows valid address range according to SmartMedia card size. MODEL VALID PAGE ADDRESS MB SMCADR0 ~ SMCADR2 MODEL VALID PAGE ADDRESS 4 MB SMCADR0 ~ SMCADR2

9.8.2.3 SMC Data Write Register (SMCDATW)

		()x8005	.C00	80											
31	30	29	28	27		26	25	24	23	22	21	20	19	18	17	16
N * (S	MCADR +	⊦ 3)'s By	te Data						N * (SN	ICADR +	- 2)'s Byt	e Data				
15	14	13	12	11		10	9	8	7	6	5	4	3	2	1	0
N * (S	N * (SMCADR + 1)'s Byte Data										Byte Dat	а				

Bits	Туре	Function
31:0	R/W	Four byte data written to this register will be sent to SmartMedia. SMC controller receives a 32bit data from host controller. Then It starts to transmit from least significant byte to most significant byte, one byte at a time. This SMC controller writes a whole page at a single write transaction, so it requires 132 times consecutive writing (528 = 512+16 bytes). A page program process is as follows: Set SMCCMD to xxxx8010h (Sequential Data Input + Page Program), SMCADR to desired target page address space, and then write first 4 byte data onto SMCDATW. In normal mode, interrupt will be generated every 4 bytes write.
		At the end of sequential data input, SmartMedia goes into page program mode by transmitting the second command to SmartMedia. Usually page program takes long time, no polling status register is recommended. SMC controller automatically generates write finish interrupt when SmartMedia comes back to ready mode.

9.8.2.4 SMC Data Read Register (SMCDATR)

	31	30	29 28	27	26	25	24	23	22	21	20	19	18	17	16
	N * (SI	MCADR +	3)'s Byte Data					N * (SI	MCADR	+ 2)'s By	te Data				
N * (SMCADR + 1)'s Byte Data N * SMCADR's Byte Data	15	14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
	N * (SI	MCADR +	1)'s Byte Data					N * SN	ICADR's	Byte Da	ta				
	Bits	Туре	Function												
Bits Type Function	04.0	5	-	1.1				1.1						,	

Bits	туре	Function
31:0	R	Four byte data read from SmartMedia is stored in this register. SMC controller receives a byte data from SmartMedia and stores it into 4 byte internal buffer to create 32bit data. First read byte data is stored at least significant byte and fourth byte data is stored at most significant byte of buffer. Host controller reads this register to get 4 byte data at a time. This SMC controller reads a whole page at a single read transaction, so it requires 132
		times consecutive reading. A page reading process is as follows: Set SMCCMD to xxxx00yyh (xxxx can be unique ID if redundant area accessed, yy is don't care. Only 00h command is valid. No 01h or 50h command supported) and then set SMCADR to target page address. SMC controller will access SmartMedia with given command and address.
		Interrupt will be generated after first four byte read. Like writing process, reading process reads a whole 528 byte in a page at a single transaction, so interrupt will be 132 times.
		Against to write operation, there is no read finish interrupt because we can count the number of read transfers in software or can get the total access word size from BYTE COUNT of SMCSTAT.

	0x8005	.C010					
31	30	29	28	27	26	25	24
POWER ENABLE	-		-	-	-		-
23	22	21	20	19	18	17	16
-	-		-	-	-		-
15	14	13	12	11	10	9	8
-	-	-	-	-	MULTI-PAGE WRITE ENALBE	MULTI-PAGE READ ENALBE	WRITE ECC ENABLE
7	6	5	4	3	2	1	0
Read ECC ENABLE	SAFE MARGIN	SMC ENABLE	-	INTR EN	-	UNIQUE ID EN	BIG CARD ENABLE

9.8.2.5 SMC Configuration Register (SMCCONF)

Bits	Туре	Function
31	R/W	Power on bit. To activate SMC controller, set this bit. Reset will fall the controller into the deep sleep mode.
30:11	-	Reserved. Keep these bits to zero.
10	R/W	Multi-page write enable bit. When this bit set, data can be stored in SMC continuously up to 32 pages. While the single page write requires write command and address for each operation, it does not necessary write command and address for each page.
9	R/W	Multi-page read enable bit. When this bit set, data stored in SMC can be read continuously up to 32 pages. While the single page read requires read command and address for each operation, it does not necessary read command and address for each page.
8	R/W	ECC write enable bit. When this bit set, 3 Byte ECC code (specified in SSFDC standard) is generated in ECC block and written to SmartMedia.
7	R/W	ECC read & check enable bit. When this bit set, 3 Byte ECC code is read out from SmartMedia and compared with regenerated ECC code, for which the data read out from SmartMedia is used. The result is returned to a host when a host reads ECC area in redundant area.
6	R/W	Safe margin enable bit. In normal mode, chip select signal changes simultaneously with read enable and write enable signals. But when this bit set, the duration of read and write enable signal applied to SmartMedia is reduced by 1 automatically. By enabling this, the rising edge of read and write enable signal will be earlier than the rising edge of chip enable, which guarantees latching data safely.
5	R/W	SMC controller enable bit. Reset this bit will make SMC controller stay in standby mode. No interrupt generated, no action occurred.
4	-	Reserved. Keep these bits to zero.
3	R/W	Interrupt enable. After reading a word or before writing a word, the interrupt bit of SMCSTAT will be set and interrupt will occur if INTR EN is enabled. If this bit is disabled, software must poll the interrupt flag of SMCSTAT to know the occurrence of an interrupt. After writing a whole page (or pages when CONT PAGE EN is enabled) to SmartMedia, write finish interrupt will also be generated to notice that the SmartMedia complete the write operation successfully.
2	-	Reserved. Keep these bits to zero.
1	R/W	Redundant page enable. When use SmartMedia with unique ID and want to access redundant page area, set high. This bit cannot be cleared automatically, so in order to read open page area clear this bit and set a reset command to SMCCMD.
0	R/W	Larger than 32MB SmartMedia support enable. When using 64MB or 128MB SmartMedia, set this bit high.

			0x800	5.C014											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
-				WAIT	COUNT	ER		-	BYTE	COUN	TER			_	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	HIGH LOW COUNTER												
Bits	Туре	F	unction												
31:28	-	R	Reserved. Keep these bits to zero.												
		m re 0	Wait counter maximum limit value. Waiting time delay between address latch and write data in page program mode or between address latch and read data in read ID mode and read status register is determined by this register. 2000 = 1 BCLK width 2001 = 2 BCLK width 1111 = 16 BCLK width												
		1	111 = 16	BCI K wid	łth										
23	-		111 = 16 eserved	BCLK wid	dth										
23 22:16	- R/W	R	eserved	BCLK wid		'F to acce	ess full 5	12 bytes	page at c	one acc	ess comr	nand (rea	ad or pro	gram).	
-		R	eserved			'F to acce	ess full 5	12 bytes	page at c	one acc	ess comr	nand (rea	ad or prog	gram).	
22:16		R S R H S 0 0 1	eserved hould set eserved igh pulse martMed 0 = 1 BCl 0 = 2 BCl 0 = 3 BCl		ts as 0x7 lue of re rantee co (0 BCLK (1 BCLK (2 BCLK	ad enable prrect trar with safe with safe with safe	e and wri nsfer of c ety margi ety margi	te enable lata. With n enable n enable n enable	e signal. 1 Safety M . Don't m)	The wid /largin e	th must s enable, w	atisfy the	AC char	acteristi	
22:16 15:10	R/W -	R S R H S 0 0 1 1	eserved hould set eserved igh pulse martMed 0 = 1 BCl 0 = 2 BCl 0 = 3 BCl	t these bit width va ia to guar LK width LK width LK width	ts as 0x7 lue of re rantee co (0 BCLK (1 BCLK (2 BCLK	ad enable prrect trar with safe with safe with safe	e and wri nsfer of c ety margi ety margi	te enable lata. With n enable n enable n enable	e signal. 1 Safety M . Don't m)	The wid /largin e	th must s enable, w	atisfy the	AC char	acteristi	

9.8.2.6 SMC Timing Parameter Register (SMCTIME)

0

R

9.8.2.7 SMC Status Register (SMCSTAT)

		0x8005	.C01C									
31		30	29	28	27	26	25	24				
CD INT	R	nSMCE	SMCLE	SMALE	nSMWE	nSMRE	nSMWP	SMR/B				
23		22	21	20	19	18	17	16				
CURRE	ENT CON	/IMAND/CARD D	ETECT NOTIFIC	ATION								
15		14	13	12	11	10	9	8				
EXTRA AREA		BYTE COUNT										
7		6	5	4	3	2	1	0				
				CARD								
INTERN	NAL STA	TE			DETECT	IRQ	-	BUSY				
INTERN Bits	NAL STA	TE Function			÷···=	IRQ	-	BUSY				
		Function	t Interrupt. When	card inserted or	DETECT		- e generated. In th					
Bits 31	Type R	Function Card Detec service rout	tine, look at this b	pit to identify interr	DETECT emoved, card det		e generated. In th					
Bits 31 30:24	Type R R	Function Card Detec service rout Current stat	tine, look at this b tus of output sign	bit to identify intern nals.	DETECT emoved, card det upt type.	ect interrupt will b	- e generated. In th					
Bits 31 30:24 23:16	Type R R R	Function Card Detec service rout Current stat Current act	tine, look at this to tus of output sign tive command. If	bit to identify internals.	DETECT emoved, card det upt type.	ect interrupt will b	e generated. In th					
Bits 31 30:24 23:16 15	Type R R	Function Card Detec service rout Current stat Current act	tine, look at this b tus of output sign	bit to identify internals.	DETECT emoved, card det upt type.	ect interrupt will b	e generated. In th					
Bits 31 30:24 23:16	Type R R R	Function Card Detec service rout Current stal Current acti Set when e	tine, look at this to tus of output sign tive command. If	bit to identify intern nals. in card detect inte ge is accessed.	DETECT emoved, card det upt type.	ect interrupt will b	e generated. In th					
Bits 31 30:24 23:16 15	Type R R R R R	Function Card Detec service rout Current stai Current act Set when e Current add	ine, look at this t tus of output sign ive command. If xtra area of a pa	bit to identify internals. In card detect internate in card detect internate internate internate internate in word units.	DETECT emoved, card det upt type.	ect interrupt will b	e generated. In th					
Bits 31 30:24 23:16 15 14:8 7:4 3	Type R R R R R R	Function Card Detec service rout Current stai Current act Set when e Current add Shows inter	tine, look at this to tus of output sign ve command. If xtra area of a page irras of a page ir mal state machin	bit to identify internals. In card detect internate in card detect internate internate internate internate in word units.	DETECT removed, card def upt type. rrupt, this byte sho	ect interrupt will b						
Bits 31 30:24 23:16 15 14:8 7:4	Type R R R R R R R R	Function Card Detec service rout Current stai Current act Set when e Current add Shows inter	tine, look at this t tus of output sign ve command. If xtra area of a par lress of a page ir mal state machin MC enable and s	bit to identify internals. In card detect internation card detect internation of the second s	DETECT removed, card def upt type. rrupt, this byte sho	ect interrupt will b						

Reset shows SMC is in idle mode. Set means SMC in working mode.

9.8.2.8 SMC first half page ECC Register (SMCECC1)

It contains generated ECC value of 0~255th byte in an page. Especially, it is used to calculate the error position with ECC data stored in SMC in reading operation. 0x8005 C024

	0,0000	.0024					
23	22	21	20	19	18	17	16
P4	P4'	P2	P2'	P1	P1'	1	1
15	14	13	12	11	10	9	8
P1024	P1024'	P512	P512'	P256	P256'	P128	P128'
7	6	5	4	3	2	1	0
P64	P64'	P32	P32'	P16	P16'	P8	P8'

Bits	Туре	Function
31:24	R	Reserved.
23,21,19	R	Bit position vector. It is used to calculate the bit position in the byte having error.
22,20,18	R	Complementary value of Bit position vector.
17	R	Reserved.
16	R	Reserved.
15,13,11,9, 7,5,3,1	R	Byte position vector. It is used to calculated the byte position in the first half page having error.
14,12,10,8, 6,4,2,0	R	Complementary value of Byte position vector.

9.8.2.9 SMC second half page ECC Register (SMCECC2)

It contains generated ECC value of 256~511st byte in an page. Especially, it is used to calculate the error position with ECC data stored in SMC in reading operation. 0x8005 C028

	0,0000	0020					
23	22	21	20	19	18	17	16
P4	P4'	P2	P2'	P1	P1'	1	1
15	14	13	12	11	10	9	8
P1024	P1024'	P512	P512'	P256	P256'	P128	P128'
7	6	5	4	3	2	1	0
P64	P64'	P32	P32'	P16	P16'	P8	P8'

Bits	Туре	Function
31:24	R	Reserved.
23,21,19	R	Bit position vector. It is used to calculate the bit position in the byte having error.
22,20,18	R	Complementary value of Bit position vector.
17	R	Reserved.
16	R	Reserved.
15,13,11,9, 7,5,3,1	R	Byte position vector. It is used to calculated the byte position in the second half page having error.
14,12,10,8, 6,4,2,0	R	Complementary value of Byte position vector.

			0x800	5.C02C	;										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	PAGE	SIZE for	WRITE				PAGE	SIZE for	READ			
Bits		Туре		Functior											
31:12		-		Reserved	d. Keep t	hese bits	s to zero).							
11:6		R/W		Multi-pag address. 000000 = 000001 = 000010 = 011111	= no writi = 1 page: = 2 page:	ng. s. s.	. Maxin	num 32 pa	ages can	be writter	n to SMC	with sing	gle com	mand an	d start
5:0		R/W		address. 000000 = 000001 = 000010 =	e READ no reac 1 page 2 page = 31 pa	size bit. ling. s. s. ges.	Maxim	um 32 pa	ges can b	be read fr	om SMC	with sing	le comr	nand and	d start

9.8.2.10 SMC Multi-page Read/Write Configuration Register (SMCMRW)

9.8.2.11 SMC Multi-page Read/Write Status Register (SMCSTAT)

			0x800	5.C030											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	-	-	-	- WRITE Page Count						READ Page Count					
Bits		Туре		Function	1										
31:12		-		Reserved	I. Keep	these bits	s to zero								
11:6		R/W	W Current page count in multi-page writing operation. During a page write operation, it is equal to (current page count -1). After full one page (528byte) writing, it becomes 'current page count'.												
5:0		R/W		Current page count in multi-page reading operation. During a page read operation, it is equal to (current page count -1). After full one page (528byte) reading, it becomes 'current page count'.											

0x8005.C034												
7	6	5	4	3	2	1	0					
	-	-		-	SMC access select	nSMWP	nSMCE					
Bits	Туре	Function	Function									
31:3	-	Reserved	Reserved									
2	W	When this b	SMC access mode select. When this bit set (=1), EBI interface controls SMC. When this bit unset (=0), SMC controller controls SMC.									
1	W		nSMWP control for SMC control using EBI interface. When bit [2] is used to set nSMWP of SMC.									
0	W	nSMCE control for SMC control using EBI interface. When bit [2] is used to set nSMCE of SMC.										

9.8.2.12 SMC Control Register using EBI interface (SMCEBICON)

9.8.3 SMC access using EBI interface

HMS30C7210 provides 2 methods to access SMC memory. One is the SMC controller and the other is the SMI controller.

SMC access scheme of the SMC controller in HMS30C7210 is different than that of the SMI controller. If an user want to access the SMC like as the SRAM, SMI controller must be used with the register 'SMCEBICON' (address 0x8005.C034).

The figure below shows the scheme in the HMS30C7210 for the SMC access using the EBI interface (ECC is not supported at this method). The following represents the SMC access method using the EBI interface.

- The bit 2 of the register 'SMCEBICON' must be set to '1'.
- The memory address, which enables the nRCS[3], must be used.
- When the 2 least significant bits of the memory address is equal to '01' (RA[1:0]='01'), the signal SMCLE is set.
- When the 2 least significant bits of the memory address is equal to '10' (RA[1:0]='01'), the signal SMALE is set.
- The bit 1 of the reigster 'SMCEBICON' set the signal nSMWP.
- The bit 0 of the reigster 'SMCEBICON' set the signal nSMCE.

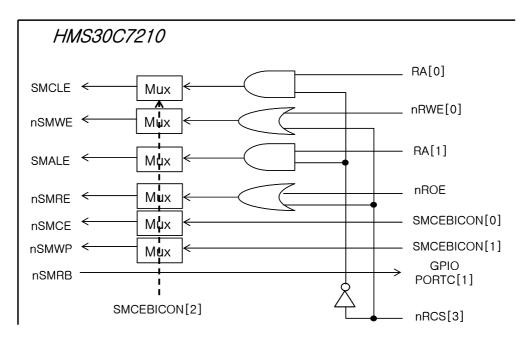


Figure 9-26. SMC access using the EBI Interface

9.9 TIMER & PWM

This module is a 16-bit counter clocked by PCLK. The frequency of PCLK is approximately 3.6923MHz when F_{CCLK} is 48MHz and obtained by the formula $F_{PCLK} = F_{CCLK} / 13$, where F_{PCLK} is the frequency of PCLK and F_{CCLK} is the frequency of CCLK. TIMER/PWM is an AMBA slave module that connects to the Advanced Peripheral Bus (APB). For more information about AMBA, please refer to the AMBA Specification (ARM IHI 0001).

The main features of timer module are :

- 8/16-bit up counter
- Auto repeat mode
- Count enable/disable
- Interrupt enable/disable
- 4-timer channel and 4 timer outputs

The main features of PWM modules are :

- 16-bit up counter
- Count enable/disable
- 2-PWM channel and 2 PWM outputs
- Adjustable PWM output period and duty ratio

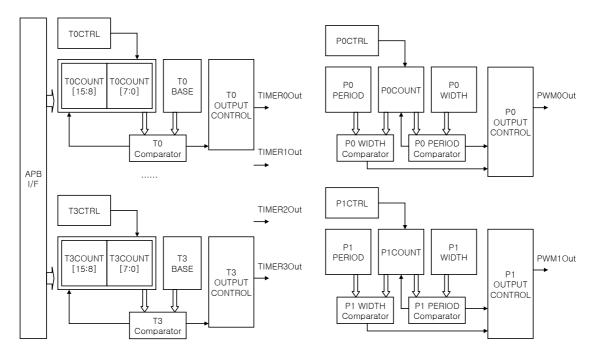


Figure 9-27. Block Diagram of TIMER/PWM

9.9.1 External Signals

Pin Name*	Туре	Description
PWM [1:0]	0	The outputs of 2 PWM channels
TIMER[3:0]	0	The outputs of 4 TIMER channels

Refer to Figure 2-1. 208 Pin diagram.

9.9.2 Registers

Address	Name	Width	Default	Description
0x8005.D000	TOBASE	16	0xFFFF	Timer0 Base Register
0x8005.D008	TOCOUNT	16	0x0	Timer0 Counter Register
0x8005 D00C	TOSTAT	1	0x0	Timer0 Status Register
0x8005.D010	T0CTRL	8	0x0	Timer0 Control Register
0x8005.D020	T1BASE	16	0xFFFF	Timer1 Base Register
0x8005.D028	T1COUNT	16	0x0	Timer1 Counter Register
0x8005 D02C	T1STAT	1	0x0	Timer1 Status Register
0x8005.D030	T1CTRL	8	0x00	Timer1 Control Register
0x8005.D040	T2BASE	16	0xFFFF	Timer2 Base Register
0x8005.D048	T2COUNT	16	0x0	Timer2 Counter Register
0x8005 D04C	T2STAT	1	0x0	Timer2 Status Register
0x8005.D050	T2CTRL	8	0x0	Timer2 Control Register
0x8005.D060	T3BASE	16	0xFFFF	Timer3 Base Register
0x8005 D068	T3COUNT	16	0x0	Timer3 Counter Register
0x8005 D06C	T3STAT	1	0x0	Timer3 Status Register
0x8005 D070	T3CTRL	8	0x0	Timer3 Control Register
0x8005 D080	TOPCTRL	10	0x0	Top-level Control Register
0x8005.D084	TOPSTAT	4	0x0	Top-level Status Register
0x8005.D0A0	POCOUNT	16	0x0	PWM channel 0 count register
0x8005.D0A4	P0WIDTH	16	0xFFFF	PWM channel 0 width register
0x8005.D0A8	P0PERIOD	16	0xFFFF	PWM channel 0 period register
0x8005.D0AC	P0CTRL	8	0x0	PWM channel 0 control register
0x8005.D0C0	P1COUNT	16	0x0	PWM channel 1 count register
0x8005.D0C4	P1WIDTH	16	0xFFFF	PWM channel 1 width register
0x8005.D0C8	P1PERIOD	16	0xFFFF	PWM channel 1 period register
0x8005.D0CC	P1CTRL	8	0x0	PWM channel 1 control register

Table 9-13. Timer Register Summary

9.9.2.1 Timer Top-level Control Register (TOPCTRL)

15		14	13	12	11	10	9	8				
-		-	-	-	-	-	TIMER3 OUTEN	TIMER2 OUTEN				
7		6	5	4	3	2	1	0				
TIMER		TIMER0 OUTEN	TIMER3 CLKSEL	nPOWER DOWN	TIMER3 INTEN	TIMER2 INTEN	TIMER1 INTEN	TIMER0 INTEN				
Bits	Туре	Functio	n									
9	R/W	Setting t reaches register 0 = Outp	T3BASE, the out occurs, the outpout out of timer chan	ne output of timer of tput of timer chann ut is reset to '0'. nel 3 is blocked. (c	nel 3(TIMER[3]) to lefault)		TIMER[3]. Whene n reset or SOFTRI					
8	R/W	Timer ch Setting t reaches register 0 = Outp	hannel 2 Output I his bit enables th T2BASE, the ou occurs, the outpo out of timer chan	ne output of timer of tput of timer chann ut is reset to '0'. nel 2 is blocked. (c	channel 2 to propa nel 2(TIMER[2]) to lefault)	0 0 1	TIMER[2]. Whene n reset or SOFTRI					
7 R/W Timer channel 1 Output Enable 7 R/W Timer channel 1 Output Enable Setting this bit enables the output of timer channel 1 to propagate through pin TIMER[1]. Whenever T1 reaches T1BASE, the output of timer channel 1(TIMER[1]) toggles. If a system reset or SOFTRESET i register occurs, the output is reset to '0'. 0 Output of timer channel 1 is blocked. (default) 1 Output of timer channel 1 appears on pin TIMER[1].												
6	R/W	Setting t reaches register 0 = Outp	T0BASE, the ou occurs, the outpo out of timer chan	e output of timer of timer of timer of timer chan	nel 0(TIMER[0]) to lefault)		TIMER[0]. Whene n reset or SOFTRI					
5	R/W	Timer ch All count Timer 3. 0 = T3C	hannel 3 Clock so ters in timer char (For details, see OUNT is clocked	ource	e in PCLK domai) t)		nel 3 Select the clo	ock source of				
4	R/W	Power d Activate: 0 = Indic	own mode (Activ s TIMER/PWM n cates power dow		g PCLK. signal(PCLK) is a	lways '0'. (default	t)					
3	R/W	Timer ch Setting t 0 = No ir	hannel 3 interrup his bit enables g nterrupt is reque		upt signal from tin annel 3. (default)	ner channel 3.						
2	R/W	Timer ch Setting t 0 = No ir	nannel 2 Interrup his bit enables g nterrupt is reque	t Enable eneration of interri sted from timer cha	upt signal from tin annel 2. (default)	ner channel 2.						
1	R/W	1 = Interrupt is generated when T2COUNT reaches T2BASE. Timer channel 1 Interrupt Enable Setting this bit enables generation of interrupt signal from timer channel 1. 0 = No interrupt is requested from timer channel 1. (default) 1 = Interrupt is generated when T1COUNT reaches T1BASE										
		1 = Interrupt is generated when T1COUNT reaches T1BASE. Timer channel 0 Interrupt Enable Setting this bit enables generation of interrupt signal from timer channel 0.										

0 = No interrupt is requested from timer channel 0. (default) 1 = Interrupt is generated when T0COUNT reaches T0BASE.

9.9.2.2 Timer Status Register (TOPSTAT)

0x8005.D084

05.0004											
7		6	5	4	3	2	1	0			
-			-	-	TIMER3 MATCH	TIMER2 MATCH	TIMER1 MATCH	TIMER0 MATCH			
Bits	Туре	Function									
7:4	-	Reserved									
3	R	0 = MATCH	This bit reflect the status of ST bit in T3STAT 0 = MATCH bit in T3STAT is cleared. 1 = MATCH bit In T3STAT is set.								
2	R	0 = MATCH	This bit reflect the status of ST bit in T2STAT 0 = MATCH bit in T2STAT is cleared. 1 = MATCH bit In T2STAT is set.								
1	R	0 = MATCI	This bit reflect the status of ST bit in T1STAT 0 = MATCH bit in T1STAT is cleared. 1 = MATCH bit In T1STAT is set.								
0	R	0 = MATCH		us of ST bit in T0STA IAT is cleared. IAT is set.	Л						

9.9.2.3 Timer [0,1,2,3] Base Register (T[0,1,2,3]BASE)

0x8005.D000 / 0x8005.D020 / 0x8005.D040 / 0x8005 D060

Bits	Туре	Function				
15:0	R/W	Timer 0 (Timer 1, Timer 2, Timer3) Base Register				
This register is used to limit the upper boundary of ThCOUNT(n = 0,1,2,3). When ThCOUNT reaches						
		TnCOUNT is cleared and each timer channel may generate an interrupt. And also the output of each timer				
		channel may toggle. The initial value of TnBASE is 0xFFFF.				
.9.2.4		er [0,1,2,3] Count Register (T[0,1,2,3]COUNT)				
		8 / 0x8005.D048 / 0x8005 D068				
5.D008 / 15	0x8005.D0	8 / 0x8005.D048 / 0x8005 D068 3 12 11 10 9 8 7 6 5 4 3 2 1				
5.D008 / 15	0x8005.D0 14 ,3]COUNT	8 / 0x8005.D048 / 0x8005 D068 3 12 11 10 9 8 7 6 5 4 3 2 1				
5.D008 / 15 T[0,1,2	0x8005.D0	8 / 0x8005.D048 / 0x8005 D068 3 12 11 10 9 8 7 6 5 4 3 2 1 15:0]				

9.9.2.5 Timer [0,1,2,3] Control Register (T[0,1,2,3]CTRL)

0x8005.D010 / 0x8005.D030 / 0x8005.D050 / 0x8005 D070

7	(5 5	4	3	2	1	0								
PRES	CALER			BYTE MODE	SOFT RESET	REPEAT MODE	COUNT ENABLE								
Bits	Туре	Function													
7:4	R/W	Counter clock prescaler TnCOUNT is clocked by (PRESCALER + 1)th CLK(n = 0,1,2,3). The symbol CLK represents normally PCLK or the moment when T2COUNT equals T2BASE.													
		PRESCALER	Clock source												
		0000	CLK (default)												
		0001	CLK/2												
		0010	CLK/3												
		0011	CLK/4												
		 1110	 CLK/15												
		1111	CLK/16												
3	R/W	Byte mode.													
	R/W	,	s set, each TnCOUNT c	perates as 8-bit cou	nter and the uppe	r limit of TnCOUN	T is 0xFF.								
		0 = TnCOUNT o	If BYTEMODE is set, each TnCOUNT operates as 8-bit counter and the upper limit of TnCOUNT is 0xFF. 0 = TnCOUNT operates as normal 16-bit counter. (default)												
		1 = TnCOUNT of	operates as 8-bit counte	r and is cleared whe	n it reaches 0xFF.										
2	R/W	Software reset	command												
		This bit resets TnCOUNT and the output of each timer channel. This bit is not auto-cleared so user should clear													
			uing SOFTRESET comn	nand.											
		0 = Normal ope	· /												
		1 = Resets TnCOUNT and output of timer channel.													
1	D 44/	140 011 110					When this bit is set, TnCOUNT repeats the following actions until REPEATMODE is cleared : TnCOUNT increments \rightarrow reaches TnBASE \rightarrow clears \rightarrow increments \rightarrow								
1	R/W			the following actions		DE is cleared :									
1	R/W	TnCOUNT incre	ements \rightarrow reaches TnB	the following actions ASE \rightarrow clears \rightarrow ind	crements \rightarrow	DE is cleared :									
1	R/W	TnCOUNT incre 0 = TnCOUNT s	ements → reaches TnB. stops counting when Tn0	the following actions ASE \rightarrow clears \rightarrow inc COUNT reaches ThE	crements → BASE. (default)										
·		TnCOUNT incre 0 = TnCOUNT s 1 = TnCOUNT i	ements \rightarrow reaches TnB	the following actions ASE \rightarrow clears \rightarrow inc COUNT reaches ThE	crements → BASE. (default)										
1 0	R/W R/W	TnCOUNT incre 0 = TnCOUNT s 1 = TnCOUNT i Counter enable	ements → reaches TnB. stops counting when Tn ncrements repeatedly w	the following actions ASE → clears → ind COUNT reaches ThE hile COUNTENABLE	crements → BASE. (default) E in TnCTRL is se	t	nCOUNT reaches								
·		TnCOUNT incre 0 = TnCOUNT s 1 = TnCOUNT i Counter enable Setting this bit e	ements → reaches TnB. stops counting when Tn0	the following actions ASE → clears → ind COUNT reaches ThE hile COUNTENABLE	crements → BASE. (default) E in TnCTRL is se	t	nCOUNT reaches								
·		TnCOUNT incre 0 = TnCOUNT s 1 = TnCOUNT i Counter enable Setting this bit e	ements → reaches TnB, stops counting when Tn0 ncrements repeatedly w enables TnCOUNT to ind EATMODE is '0'.	the following actions ASE → clears → ind COUNT reaches ThE hile COUNTENABLE	crements → BASE. (default) E in TnCTRL is se	t	nCOUNT reaches								

9.9.2.6 *Timer* [0,1,2,3] *Status Register* (*T*[0,1,2,3]*STAT*)

0x8005.D00C / 0x8005.D02C / 0x8005.D04C / 0x8005 D06C

7		6	5	4	3	2	1	0
-		-	-	-	-	-	-	MATCH
Bits	Туре	Function						
7:1	-	Reserved						
0	R	interrupt re 0 = TnSTA	is set when quest when	interrupt is pendir or TnCOUNT not	ng.	•	InSTAT clears MA	TCH bit and disables

9.9.2.7 *PWM Channel* [0,1] *Count Register* (*P*[0,1]*COUNT*)

15	14	13	12	11	10	9	8	1	6	5	4	3	2	1	0
P[0,1]C	OUNT														
Bits	Туре	Fu	inction												
15:0	R	Tł	ne clock		f this cou		,			PnCTRL()000.	n = 0,1).				
9.9.2.8			Chani	nel [0,	.1] Wi	dth Re	egister	(P[0,	1] WI	DTH)					
9.9.2.8 05.D0A4 / 15 P[0,1]W	0x8005. 14		Chani 12	nel [0, 11	1] Wi 10	dth Re	egister 8	(<i>P[0,</i>	1] WI 6	DTH) 5	4	3	2	1	0
)5.D0A4 / 15	0x8005. 14	D0C4 13		-	-			7 (<i>P[0</i> ,	-	,	4	3	2	1	0

15	14	13 12 11 10 9 8 7 6 5 4 3 2 1 0							
P[0,1]	PERIOD								
Bits	Туре	Function							
15:0	R/W	PWM 0 (PWM 1) period register							
	This register is used to define 1 period of PWM output. When PnCOUNT reaches PnPERIOD, the counter resets								
		to 0x0000 and starts counting again.							

9.9.2.10	PWM Channel [0,1]	Control Register	(<i>P</i> [0,1] <i>CTRL</i>)
----------	-------------------	------------------	--------------------------------

0x8005.D0AC / 0x8005.D0CC

	(5 5	4	3	2	1	0				
PRES	CALER			OUTPUT INVERT	OUTPUT ENABLE	SOFT RESET	PWM ENABLE				
Bits	Туре	Function									
7:4	R/W	PnCOUNT is clocked	Counter clock prescaler PnCOUNT is clocked by (PRESCALER + 1)th PCLK(n = 0,1). PRESCALER Clock source								
		0000	PCLK (default)								
		0001	PCLK/2								
		0010	PCLK/3								
		0011	PCLK/4								
		1110	PCLK/15								
	5	1111	PCLK/16								
3	R/W	PWM output waveform inverting Normally the PWM output is LOW when PnCOUNT reaches PnWIDTH and HIGH when PnCOUNT reaches									
		PnPERIOD. Setting 1	his bit makes the p	olarity of PWM output	to be inverted. If	this bit is set, the	e PWM output is				
		HIGH when PnCOUNT reaches PnWIDTH and LOW when PnCOUNT reaches PnPERIOD.									
				TH and LOW when P							
		The initial value of P	WM output is HIGH	TH and LOW when Pr regardless of OUTPL							
		The initial value of P 0 = PWM output is no	WM output is HIGH ot inverted. (default	TH and LOW when Pr regardless of OUTPL							
		The initial value of P 0 = PWM output is no 1 = PWM output is in	WM output is HIGH ot inverted. (default	TH and LOW when Pr regardless of OUTPL							
2	R/W	The initial value of P 0 = PWM output is no 1 = PWM output is in PWM output enable	WM output is HIGH ot inverted. (default verted.	TH and LOW when Pr regardless of OUTPL)	JTINVERT in PnC	CTRL.					
2	R/W	The initial value of P 0 = PWM output is no 1 = PWM output is in PWM output enable Setting this bit enable	WM output is HIGH ot inverted. (default verted. es the output of eac	TH and LOW when Progradless of OUTPL	JTINVERT in PnC	CTRL.					
2	R/W	The initial value of P 0 = PWM output is no 1 = PWM output is in PWM output enable Setting this bit enable reset or SOFTRESE	WM output is HIGH ot inverted. (default verted. es the output of eac T in PnCTRL registe	TH and LOW when Pri regardless of OUTPL) ch PWM channel to pr er occurs, the output i	JTINVERT in PnC	CTRL.					
2	R/W	The initial value of PM 0 = PWM output is no 1 = PWM output is in PWM output enable Setting this bit enable reset or SOFTRESE 0 = Output propagati	WM output is HIGH ot inverted. (default verted. es the output of eac T in PnCTRL registe on is disabled. (defa	TH and LOW when Pri regardless of OUTPL) ch PWM channel to pr er occurs, the output i	JTINVERT in PnC	CTRL.					
2		The initial value of PM 0 = PWM output is in 1 = PWM output is in PWM output enable Setting this bit enable reset or SOFTRESE 0 = Output propagati 1 = Output propagati	WM output is HIGH ot inverted. (default verted. es the output of eac T in PnCTRL registe on is disabled. (defa on is enabled.	TH and LOW when Pri regardless of OUTPL) ch PWM channel to pr er occurs, the output i	JTINVERT in PnC	CTRL.					
	R/W R/W	The initial value of P 0 = PWM output is in 1 = PWM output is in PWM output enable Setting this bit enable reset or SOFTRESE 0 = Output propagati 1 = Output propagati Software reset comm	WM output is HIGH bt inverted. (default verted. es the output of eac T in PnCTRL registe on is disabled. (defa on is enabled. nand	TH and LOW when Pr regardless of OUTPL) th PWM channel to pr er occurs, the output i ault)	UTINVERT in PnC opagate through s reset to '0'.	pin PWM[0] or P	WM[1]. If a system				
		The initial value of PV 0 = PWM output is in 1 = PWM output is in PWM output enable Setting this bit enable reset or SOFTRESE 0 = Output propagati 1 = Output propagati Software reset comm This bit resets PnCO	WM output is HIGH bt inverted. (default verted. es the output of eac T in PnCTRL registe on is disabled. (defa on is enabled. mand UNT and the outpu	TH and LOW when Pri regardless of OUTPL) th PWM channel to pr er occurs, the output i ault) t of each PWM chann	UTINVERT in PnC opagate through s reset to '0'.	pin PWM[0] or P	WM[1]. If a system				
2		The initial value of PV 0 = PWM output is in 1 = PWM output is in PWM output enable Setting this bit enable reset or SOFTRESE 0 = Output propagati 1 = Output propagati Software reset comm This bit resets PnCO this bit after issuing S	WM output is HIGH bt inverted. (default verted. T in PnCTRL registe on is disabled. (defa on is enabled. UNT and the outpu COFTRESET comm	TH and LOW when Pri regardless of OUTPL) th PWM channel to pr er occurs, the output i ault) t of each PWM chann	UTINVERT in PnC opagate through s reset to '0'.	pin PWM[0] or P	WM[1]. If a system				
		The initial value of PV 0 = PWM output is in 1 = PWM output is in PWM output enable Setting this bit enable reset or SOFTRESE 0 = Output propagati 1 = Output propagati Software reset comm This bit resets PnCO	WM output is HIGH bt inverted. (default verted. T in PnCTRL registe on is disabled. (defa on is enabled. UNT and the outpu COFTRESET comm	TH and LOW when Pri regardless of OUTPL) th PWM channel to pr er occurs, the output i ault) t of each PWM chann	UTINVERT in PnC opagate through s reset to '0'.	pin PWM[0] or P	WM[1]. If a system				
		The initial value of PV 0 = PWM output is m 1 = PWM output is in PWM output enable Setting this bit enable reset or SOFTRESE 0 = Output propagati 1 = Output propagati Software reset comm This bit resets PnCO this bit after issuing S 0 = Normal operation 1 = Resets PnCOUN	WM output is HIGH bt inverted. (default verted. T in PnCTRL register on is disabled. (defa on is enabled. UNT and the outpu SOFTRESET comm L (default)	TH and LOW when Pr regardless of OUTPL) th PWM channel to pr er occurs, the output i ault) t of each PWM chann and.	UTINVERT in PnC opagate through s reset to '0'.	pin PWM[0] or P	WM[1]. If a system				
2 1 0		The initial value of PV 0 = PWM output is m 1 = PWM output is in PWM output enable Setting this bit enable reset or SOFTRESE 0 = Output propagati 1 = Output propagati Software reset comm This bit resets PnCO this bit after issuing S 0 = Normal operation	WM output is HIGH bt inverted. (default verted. T in PnCTRL register on is disabled. (defa on is enabled. UNT and the outpu SOFTRESET comm L (default)	TH and LOW when Pr regardless of OUTPL) th PWM channel to pr er occurs, the output i ault) t of each PWM chann and.	UTINVERT in PnC opagate through s reset to '0'.	pin PWM[0] or P	WM[1]. If a system				
1	R/W	The initial value of PV 0 = PWM output is m 1 = PWM output is in PWM output enable Setting this bit enable reset or SOFTRESE 0 = Output propagati 1 = Output propagati Software reset comm This bit resets PnCO this bit after issuing S 0 = Normal operation 1 = Resets PnCOUN	WM output is HIGH bt inverted. (default verted. T in PnCTRL register on is disabled. (defa on is enabled. UNT and the output SOFTRESET comm I. (default) T and output of PW	TH and LOW when Pr regardless of OUTPL) th PWM channel to pr er occurs, the output i ault) t of each PWM chann and. /M channel.	UTINVERT in PnC opagate through s reset to '0'.	pin PWM[0] or P	WM[1]. If a system				
1	R/W	The initial value of P 0 = PWM output is m 1 = PWM output is in PWM output enable Setting this bit enable reset or SOFTRESE 0 = Output propagati 1 = Output propagati Software reset comm This bit resets PnCO this bit after issuing S 0 = Normal operation 1 = Resets PnCOUN Counter enable.	WM output is HIGH bt inverted. (default verted. T in PnCTRL registe on is disabled. (defa on is enabled. UNT and the output SOFTRESET comm I. (default) T and output of PW es PnCOUNT to inc	TH and LOW when Pr regardless of OUTPL) th PWM channel to pr er occurs, the output i ault) t of each PWM chann and. /M channel.	UTINVERT in PnC opagate through s reset to '0'.	pin PWM[0] or P	WM[1]. If a system				

9.9.3 Operation

9.9.3.1 Timer Counter Clock Sources

The counter of each timer channel is clocked by the peripheral clock PCLK. The clock source is selected by the clock select logic which is controlled by the PRESCALER bits in TnCTRL.

The counter can be clocked directly by the PCLK by setting the PRESCALER "0000". This provides the fastest operation, with a maximum clock frequency equal to the PCLK frequency(F_{PCLK}). Alternatively, one of 15 taps from the prescaler can be used as a clock source. The prescaled clock has a frequency of either F_{PCLK} /2, F_{PCLK} /3, F_{PCLK} /4, ..., F_{PCLK} /14, or F_{PCLK} /16.

The prescaler operates when PRESCALER in TnCTRL is non-zero value, and each counter logic has it's own clock select logic. The counter starts to counting upward after COUNTENABLE in TnCTRL is set.

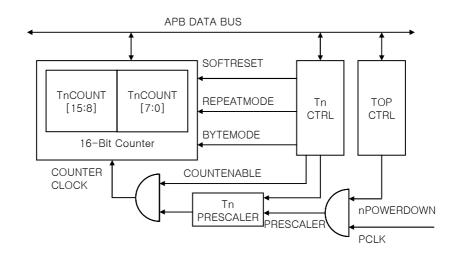


Figure 9-28. Clock select logic

9.9.3.2 Repeat and non-repeat mode of timer channel

There are two operation modes in each counter module which are non-repeat mode and repeat mode.

In non-repeat mode, the counter stops when TnCOUNT reaches TnBASE and an interrupt can be triggered if TIMERnINTEN bit is set. Also, the output of timer channel is toggled.

In repeat mode, the counter is free-running until COUNTENABLE is cleared. Whenever TnCOUNT reaches TnBASE, timer channel's output toggles and an interrupt can be triggered. At the moment TnCOUNT equals to TnBASE, the counter is cleared and starts counting from initial value(0x0000) while COUNTENABLE is high.

To operate timer in non-repeat mode, follow the steps below :

Non-repeat mode

- Activate clock source by setting nPOWERDOWN '1' and determine whether to propagate the output of timer channel or not. Also determine whether interrupt is enabled or not. (TOPCTRL)
- Set the target value. (TnBASE)
- Select clock frequency and non-repeat mode. (TnCTRL)
- Start counting. (TnCTRL)

Through out this chapter, the following symbols are used.

PCLK : peripheral clock PCLK (CCLK/13) CountClk : clock source of counter which is PCLK or It's prescaled clock. TIMERnOut : output of each timer channel that can be propagated through TIMER[n]. TIMERnInterrupt : interrupt source of each timer channel

The following figure is an example of non-repeat mode operation.

In this figure, see that CountClk is stopped when TnCOUNT equals to TnBASE and the LSB of TnCTRL is cleared. These are the characteristics of non-repeat mode operation of timer. The output of timer channel changes and interrupt can be triggered when TnCOUNT equals to TnBASE.

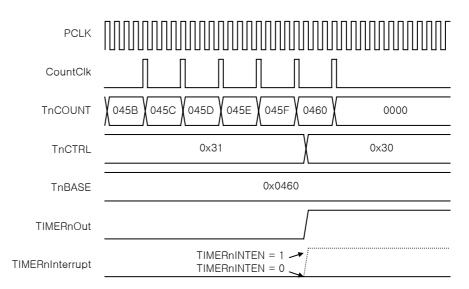
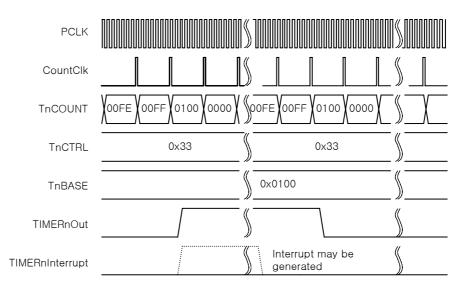


Figure 9-29. Non-repeat mode operation



To operate timer in repeat mode, follow the steps below :

Repeat mode

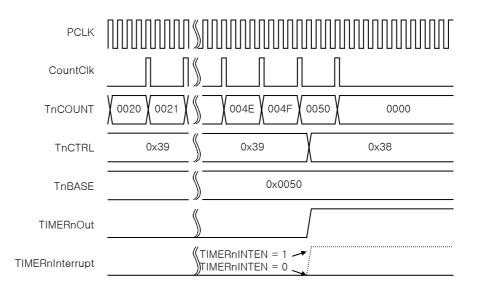
- Activate clock source by setting nPOWERDOWN '1' and determine whether to propagate the output of timer channel or not. Also determine whether interrupt is enabled or not. (TOPCTRL)
- Set the target value. (TnBASE)
- Select clock frequency and repeat mode. (TnCTRL)
- Start counting. (TnCTRL)

The following figure is an example of repeat mode operation.

Figure 9-30. Repeat mode operation

As it can be seen in the above figure, CountClk is not stopped while COUNTENABLE is high. And TIMERnOut changes it's value at the moment TnCOUNT equals to TnBASE.

9.9.3.3 8-bit timer operation


Normally TnCOUNT is 16-bit up counter. And if TnBASE is at it's reset value, TnCOUNT increments up to 0xFFFF and then overflows(overflow interrupt is not supported). But TnCOUNT can also used as 8-bit counter by setting BYTEMODE

To operate timer in repeatmode, follow the steps below :

Byte mode

- Activate clock source by setting nPOWERDOWN '1' and determine whether to propagate the output of timer channel or not. Also determine whether interrupt is enabled or not. (TOPCTRL)
- Set the target value. (TnBASE)
- Select clock frequency and determiner repeat or non-repeat mode. (TnCTRL)
- Select byte mode and start counting. (TnCTRL)

The following figure is an example of byte counter in non-repeat mode operation. Note that the timing and operation is the same as normal 16-bit counter in non-repeat mode when TnBASE is less than or equal to "0xFF".

Figure 9-31. Byte counter operation in non-repeat mode

The following figure is an example of byte counter in repeat mode operation.

Note that TnBASE is out of the range of 8-bit counter, so TnCOUNT never reaches TnBASE therefore no interrupt is triggered and output of timer maintain previous value.

Except that it is the same as normal 16-bit counter in repeat mode operation.

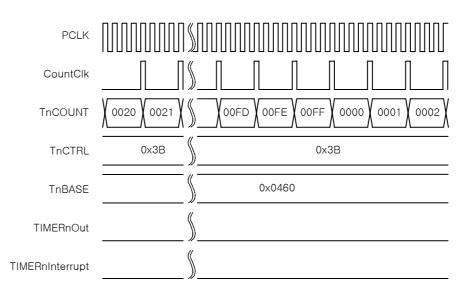


Figure 9-32. Byte counter operation in repeat mode

9.9.3.4 Timer channel 3 clock source change

Counters of all timer channel are clocked by PCLK or it's prescaled clock. But counter of timer channel 3 has additional clock source.

When TIMER3CLKSEL in TOPCTRL is set, T3COUNT is clocked when T2COUNT equals to T2BASE(T2MATCH event). Even if T3COUNT is clocked by T2MATCH event, the prescaler of timer channel 3 works.

In the following figure, the PRESCALER value of timer channel 3 is '0', so at each T2MATCH event T3COUNT is clocked.

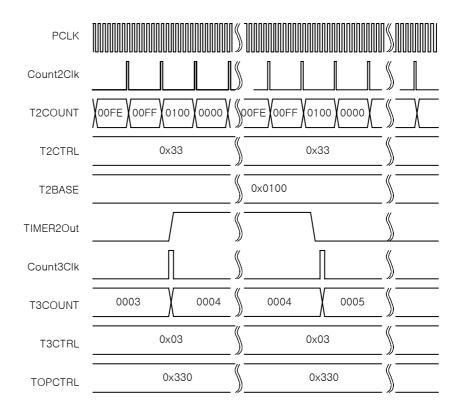


Figure 9-33. Clock source of T3COUNT is T2MATCH event

9.9.3.5 Timer soft reset

When SOFTRESET in TnCTRL is set, counter and output of timer channel n is cleared.

Note that SOFTRESET bit is not auto-cleared, so TnCTRL must be re-written to start counting again. SOFTRESET is an asynchronous reset input to counter module, so while SOFTRESET is HIGH, the counter and output are in their reset state.

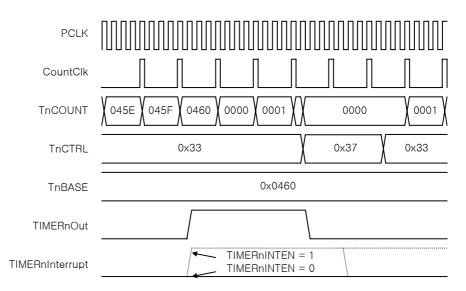


Figure 9-34. Software issued reset command

9.9.3.6 *Timer output and interrupt generation*

There is only one interrupt condition in each timer channel and it's match event of $\ensuremath{\mathsf{TnCOUNT}}$.

As seen below, TnCOUNT increments after COUNTENABLE is set. When TnCOUNT reaches TnBASE (match condition), the counter is cleared and timer output is toggled, and if interrupt generation is enabled by TIMERnINTEN timer interrupt is also requested. If timer operates in repeat mode, the counter continues to increment from 0x0000. If match condition occurs, the MATCH bit in TnSTAT is set.

The following figure is an example of counter in repeat mode operation.

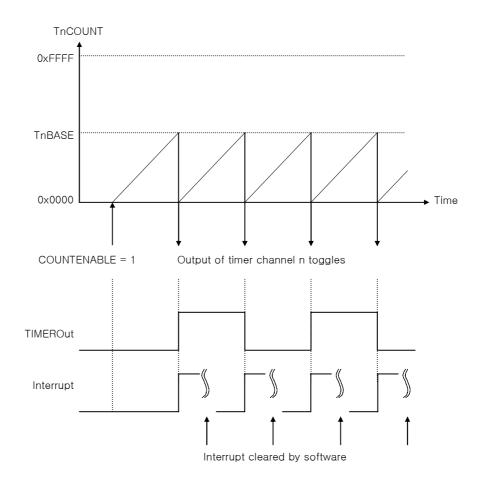


Figure 9-35. Output and interrupt generation in repeat mode

TINCOUNT OxFFFF TINBASE OX0000 COUNTENABLE = 1 Output of timer channel n toggles & TIMEROut Interrupt Interrupt Interrupt cleared by software

The following figure is an example of counter in non-repeat mode operation. All is the same as above but when match condition occurs the counter stops.

Figure 9-36. Output and interrupt generation in non-repeat mode

9.9.3.7 PWM Counter Clock Sources

The counter of each PWM channel is clocked by the peripheral clock PCLK. The clock source is selected by the clock select logic which is controlled by the PRESCALER bits in PnCTRL.

The PWM counter can be clocked directly by the PCLK by setting the PRESCALER "0000". This provides the fastest operation, with a maximum clock frequency equal to the PCLK frequency(F_{PCLK}). Alternatively, one of 15 taps from the prescaler can be used as a clock source. The prescaled clock has a frequency of either F_{PCLK} /2, F_{PCLK} /3, F_{PCLK} /4, ..., F_{PCLK} /14, or F_{PCLK} /16.

The prescaler operates when PRESCALER in PnCTRL is non-zero value, and each counter logic has it's own clock select logic.

The counter starts to counting upward after PWMENABLE in PnCTRL is set.

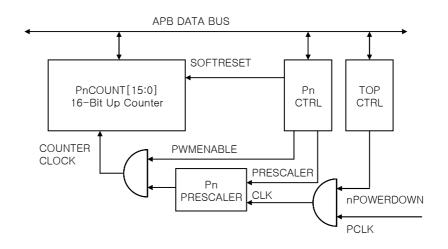


Figure 9-37. Clock select logic

- Activate clock source by setting nPOWERDOWN '1'. (TOPCTRL)
- Set the PWM period and duration. (PnPERIOD, PnWIDTH)
- Determine whether to propagate the output of PWM channel or not. (PnCTRL)
- Select clock frequency and start counting. (PnCTRL)

9.9.3.8 *PWM output generation*

PWM output's duty and period is controlled by the registers PnWIDTH and PnPERIOD.

When OUTPUTINVERT is '0' :

PWM output goes LOW when PnCOUNT reaches PnWIDTH and continues to increment. When PnCOUNT reaches PnPERIOD, PWM output goes HIGH and PnCOUNT is cleared. This is repeated until PWMENABLE is high. In this setting PnWIDTH is the duration of HIGH level of PWM output. The following figure shows the example of PWM waveform when OUTPUTINVERT is '0'. At reset, PWMOut is HIGH.

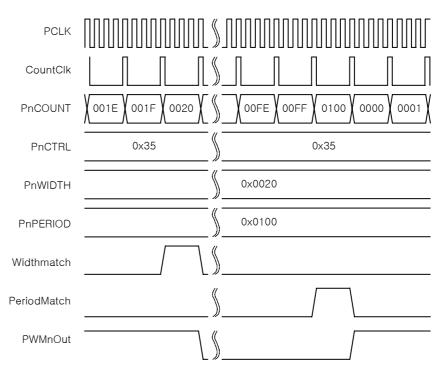


Figure 9-38. Timing diagram of PWM channel when OUTPUTINVERT = 0

When OUTPUTINVERT is '1' :

PWM output goes HIGH when PnCOUNT reaches PnWIDTH and continues to increment. When PnCOUNT reaches PnPERIOD, PWM output goes LOW and PnCOUNT is cleared. This is repeated until PWMENABLE is high. In this setting PnWIDTH is the duration of LOW level of PWM output. The following figure shows the example of PWM waveform when OUTPUTINVERT is '1'.

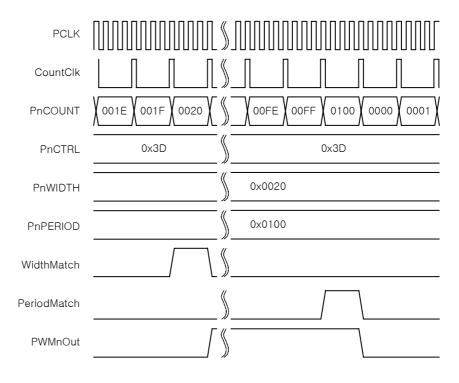


Figure 9-39. Timing diagram of PWM channel when OUTPUTINVERT = 1

9.9.3.9 *PWM duty control*

When OUTPUTINVERT is '0' :

In this setting PnWIDTH is the duration of HIGH level of PWM output. Below 2 figures show the waveform of PWM output for 30% and 80% duty ratio when OUTPUTINVERT is '0'.

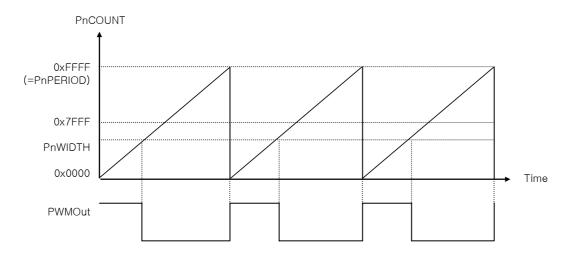


Figure 9-40. PWM waveform when OUTPUTINVET = 0, duty = 30%

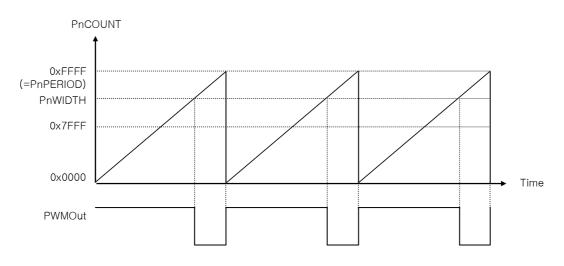


Figure 9-41. PWM waveform when OUTPUTINVET = 0, duty = 80%

The frequency of PWM output is calculated by the equation $F_{PWM} = F_{CountClk} / PnPERIOD$ where $F_{CountClk}$ is the frequency of clock source of PWM counter. Hence the value of PnPERIOD affects the period of PWM output.

If the value PnPERIOD is fixed, changing the value of PnWIDTH extends or shrinks the length of HIGH level of PWM output with period fixed. Hence the value of

PnWIDTH affects the duty ratio of PWM output. If PnWIDTH is greater than PnPERIOD, the PWM output is always HIGH. 50% duty ratio is achieved by setting PnWIDTH half of PnPERIOD. At reset, PWMOut is HIGH.

When OUTPUTINVERT is '1':

In this setting PnWIDTH is the duration of LOW level of PWM output. Below 2 figures show the waveform of PWM output for 30% and 80% duty ratio when OUTPUTINVERT is '1'.

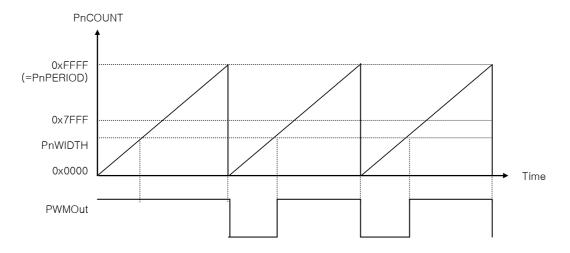


Figure 9-42. PWM waveform when OUTPUTINVET = 1, duty = 30%

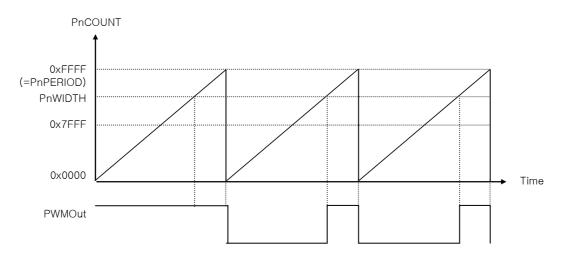


Figure 9-43. PWM waveform when OUTPUTINVET = 1, duty = 80%

Note that the initial value of PWMOut is HIGH, so the 1st period of PWM output is always HIGH when OUTPUTINVERT is '1'.

9.9.3.10 Timer soft reset

Like timer module, when SOFTRESET in PnCTRL is set, counter and output of PWM channel n is cleared.

Note that SOFTRESET bit is not auto-cleared, so PnCTRL must be re-written to start counting again. SOFTRESET is an asynchronous reset input to counter module, so while SOFTRESET is HIGH, the counter and output are in their reset state.

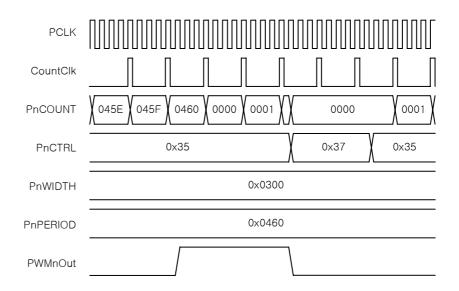


Figure 9-44. Software issued reset command

9.10 Watchdog Timer

The watchdog timer (WDT) has an one-channel for monitoring system operation. If a system becomes uncontrolled and the timer counter overflows without being rewritten correctly by the CPU, a reset signal is output to PMU. When this watchdog function is not needed, the WDT can be used as an interval timer. In the interval timer operation, an interval timer interrupt is generated at each counter overflow.

FEATURES

- Watchdog timer mode and interval timer mode
- Interrupt signal INTWDT to interrupt controller in the watchdog timer mode & interval timer mode
- Output signal MNRESET to PMU (Power Management Unit)
- Eight counter clock sources
- Selection whether to reset the chip internally or not
- Reset signal type: manual reset
- Clock source is 32.768KHz

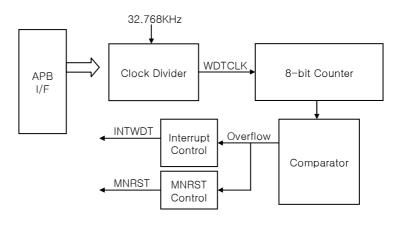


Figure 9-4 WDT block diagram

9.10.1 Registers

Address	Name	Width	Default	Description
0x8005.E000	WDTCTRL	8	0x0	Timer/Reset Control
0x8005.E004	WDTSTAT	2	0x0	Reset Status
0x8005.E008	WDTCNT	8	0x0	Timer Counter

Table 9-14. Watchdog Timer Register Summary

9.10.1.1 WDT Control Register (WDTCTRL)

7		6	5 4	4 3	2	1	0
INTEN		MODESEL	TMEN	MNRSTEN [4:3]	CLKSEL [2:0]	
Bits	Туре	Function					
7	R/W		request enable ue of WDTCNT re	gister matches to 256	decimal value, an interru	pt signal is genera	ted.
6	R/W	Timer mode :	er to use the WDT mer mode	as a watchdog timer o	or interval timer.		
5	R/W	Enable the W When this bit 0 = disable 1 = enable		can load data in WDT	CNT register.		
4:3	R/W	00 = disable		o internally or not if the	TCNT overflows in the w	ratchdog timer mod	de.
2:0	R/W	Clock select		he clock signals a			
		dividing the c	lock source. The o	clock Source is 32.768	1		re obtained
			lock source. The o	clock Source is 32.768			re obtained

9.10.1.2 WDT Status Register (WDTSTAT)

0x8005.E004

7		6	5	4	3	2	1	0
-		-	-	-	-	-	ITOVF	WTOVF
Bits	Туре	Functior	n					
7:2	-	Reserved	d					
1	R	This bit w This bit is 0: Interru	s reset to '0' w	' when WDTCN henever the CP nerated or was	U reads the conte	in the interval time ents of this Registe		
0	R	This bit w This bit is 0: Interru	s reset to '0' w	when WDTCN henever the CP nerated or was	U reads the conte	in the watchdog ti ents of this Registe		

9.10.1.3 WDT Counter (WDTCNT)

0x8005.E008

7	(5 5	4	3	2	1	0
WDTC	NT						
Bits	Туре	Function					
7:0	R	When the valu	r. When the timer is en ie of the WDTCNT ch e both timer modes. The	anges from 0xF	F-0x00(overflows), a watchdog ti	

9.10.2 Watchdog Timer Operation

9.10.2.1 The Watchdog Timer Mode

To use the WDT as a watchdog timer, set the MODESEL and TMEN bits of the WDTCTRL register to '1'. Software must prevent WDTCNT overflow by rewriting the WDTCNT value (normally by writing 0x00) before overflow occurs. If the WDTCNT fails to be rewritten and overflow due to a system crash or the like, INTWDT signal and MNRST signal are output. The INTWDT signal is not output if the INTEN bit of WDTCTRL register is disabled (INTEN = 0). The MNRSTEN bits of WDTCTRL register should be set to '11' for MNRST output.

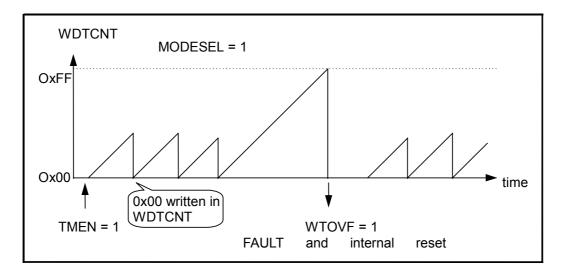


Figure 9-5 WDT Operation in the Watchdog Timer mode

9.10.2.2 The Interval Timer Mode

To use the WDT as an interval timer, clear MODESEL in WDTCTRL register to '0' and set TMEN to '1'. A interval timer interrupt (INTWDT) is generated each time the timer counter overflows. This function can be used to generate interval timer interrupts at regular intervals. The MNRSTEN bits of WDTCTRL register should be set to '00'.

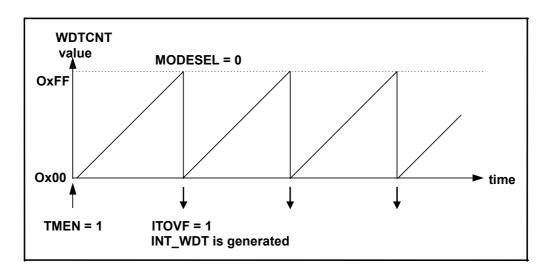
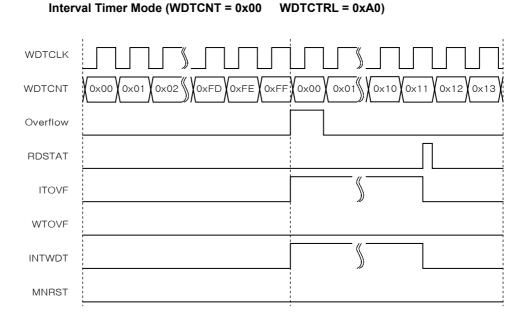


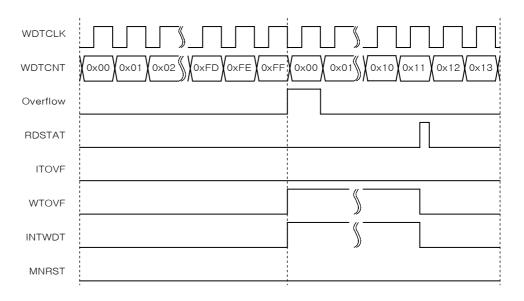
Figure 9-6 WDT Operation in the Interval Timer mode

9.10.2.3 Timing of setting the overflow flag


In the interval timer mode when the WDTCNT overflows, the ITOVF flag is set to 1 and an watchdog timer interrupt (INTWDT) is requested. In the watchdog timer mode when the WDTCNT overflows, the WTOVF bit of the WDTSTAT is set to 1 and a WDTOUT signal is output. When RSTEN bit is set to 1, WDTCNT overflow enables an internal reset signal to be generated for the entire chip.

9.10.2.4 Timing of clearing the overflow flag

When the WDT Status Register (WDTSTAT) is read, the overflow flag is cleared.



9.10.2.5 Examples of Register setting

Figure 9-7 Interrupt clear in the interval timer mode

Watchdog Timer Mode with Internal Reset Disable (WDTCNT = 0x00 (normally) WDTCTRL = 0xE0)

Figure 9-8 Interrupt Clear in the watchdog timer mode with MNRST disable

WDTCLK WDTCNT	0x00 (0x01 (0x02 () (0xFD (0xFF (0xFF		
Overflow			
RDSTAT			
ITOVF			
WTOVF		<u> </u>	
INTWDT		%	
MNRST		<u> </u>	
BnRES			

Watchdog Timer Mode with Manual Reset (WDTCNT = 0x00 WDTCTRL = 0xF8)

Figure 9-9 System reset generate in the watchdog timer mode with MSRST enable

9.10.2.6 WDT Setup Flow

Watchdog timer flow

- Set low to the TMEN bit in WDTCTRL register
- Load the wished data in WDTCNT reigster (default is 8'b00)
- Select the CLKSEL, INTEN bits in WDTCTRL register
- Set high to the MODESEL bit in WDTCTRL register
- Set '11' to the MNRSTEN bits in WDTCTRL register
- Set high to the TMEN bit in WDTCTRL register

Interval timer flow

- Set low to the TMEN bit in WDTCTRL register
- Load the wished data in WDTCNT reigster (default is 8'b00)
- Select the CLKSEL, INTEN bits in WDTCTRL register
- Set low to the MODESEL bit in WDTCTRL register
- Set '00' to the MNRSTEN bits in WDTCTRL register
- Set high to the TMEN bit in WDTCTRL register

9.11 RTC

The RTC works with an external 32768Hz crystal oscillator. It comprises secondcounter to year-counter clock and calendar circuits that feature automatic leap-year adjustment up to year 2099, alarm and tick-timer interrupt functions. Also it can be operated by the backup battery while the system power down.

The RTC has two event outputs, one which is synchronized to PCLK, RTCIRQ, and the second, PWKUP synchronized to the 32768Hz clock. RTCIRQ is connected to the system interrupt controller, and PWKUP is used by the PMU to provide a system alarm Wake up.

FEATURES

- RTC count second, minute, hour, day, day of week, month and year with leapyear compensation valid up to 2099
- Alarm interrupt or wake-up signal from power-down mode
- Tick timer interrupt
- Independent power pin
- Write protection function

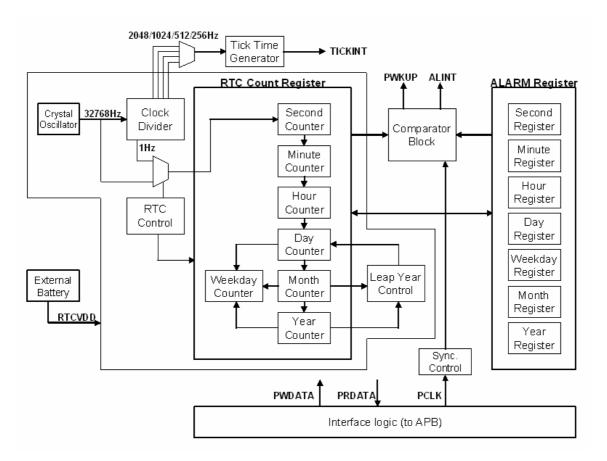


Figure 9-45. RTC Block Diagram

As shown in Figure 9-16, RTC module is connected to the APB. APB signals are refer to AMBA APB spec, and following table shows the non-AMBA signals from the RTC core block. The following table shows non-AMBA signals within RTC core block for more information about APB signals refer to the AMBA APB spec.

NAME	Source/Destination	Description
CLK32KHZ	Clock generator	32768HZ clock input. This is the signal that clocks the counter during normal operation.
RTCIRQ	APB(Interrupt controller) ASB(PMU)	When HIGH, this signal indicates a valid comparison between the counter value and the alarm register. It also indicates 1HZ interval with enable bit in control register. This signal is used to interrupt controller. Also it is used to wake up the HMS30C7210 when it is in deep sleep mode.
TICKIRQ	APB(Interrupt controller)	TICK Timer interrupt signal. It is generated when TCNT value meets TBASE value.

Table 9-15 Non-AMBA Signals within RTC Core Block

9.11.1 External Signals

Pin Name		Туре	Description
RTCOSCI	N		RTC oscillator input. 32.768KHz
RTCOSCO	DUT	0	RTC oscillator output. 32.768KHz

Refer to Figure 2-1. 208 Pin diagram.

9.11.2 Registers

Address	Name	Width	Default	Description	Write Protect
0x8005.F000	RTCTRL	6	0x1	RTC Control Register	Y
0x8005.F004	RTCSTAT	3	0x0	RTC Status Register	-
0x8005.F008	RTCSEC	7	0x0	RTC Second Register	Y
0x8005.F00C	RTCMIN	7	0x0	RTC Minute Register	Y
0x8005.F010	RTCHOR	6	0x0	RTC Hour Register	Y
0x8005.F014	RTCDAY	6	0x1	RTC Day Register	Y
0x8005.F018	RTCMON	5	0x1	RTC Month Register	Y
0x8005.F01C	RTCYER	8	0x0	RTC Year Register	Y
0x8005.F020	RTCWEK	3	0x0	RTC Week Register	Y
0x8005.F024	ALCTRL	8	0x0	ALARM Control Register	Y
0x8005.F028	ALSEC	7	0x0	ALARM Second Register	Y
0x8005.F02C	ALMIN	7	0x0	ALARM Minute Register	Y
0x8005.F030	ALHOR	6	0x0	ALARM Hour Register	Y
0x8005.F034	ALDAY	6	0x1	ALARM Day Register	Y
0x8005.F038	ALMON	5	0x1	ALARM Month Register	Y
0x8005.F03C	ALYER	8	0x0	ALARM Year Register	Y
0x8005.F040	ALWEK	3	0x0	ALARM Week Register	Y
0x8005.F044	TICTRL	8	0x0	TICK Control Register	Y
0x8005.F048	TICNT	8	0x0	TICK Count Register	Y
0x8005.F04C	TIBASE	8	0xFF	TICK Base Register	Y
0x8005.F060	PROTCTRL	1	0x1	Write Protection Control Register	-
0x8005.F07C	PROTECT1	8	-	Write Protection Register 1 (w/o)	-
0x8005.F064	PROTECT2	8	-	Write Protection Register 2 (w/o)	-
0x8005.F078	PROTECT3	8	-	Write Protection Register 3 (w/o)	-
0x8005.F06C	PROTECTLAST	8	-	Write Protection Register Last (w/o)	-
0x8005.F068	RTCTRLRESET	1	0x0	Control Register Reset Register	-

9.11.2.1 RTC Reset Register (RTCTRLRESET)

0x8005.F068

7	6	5	4	3	2	1	0		
CTRLR	ESET								
Bits	Туре	Function							
7:1	-	Reserved							
0	W	Reserved Reset bit to initialize the RTC Control Register If you use the RTC for the first time, you should set this bit first of all. If this bit is set to "1", the RTC Control Register will be cleared. Notice: Only INTEN & EVTEN bits in the RTC control register are initialized by the system reset signal. 1: reset							

9.11.2.2 RTC Protection Enable Register (PROTCTRL)

7	6	5	4	3	2	1	0
PROTE	CTEN						
Bits	Туре	Function					
7:1	-	Reserved					
0 R/W Write protection enable 0 R/W Write protection enable When this bit set to "1", wirte protection setup flow is started. To release write protection, user should wr some fixed value into RTC protection data registers sequentially. 0: No write available to another register 1: wirte protection enable							

9.11.2.3 RTC Protection 1,2,3,LAST Register (PROTECT 1,2,3,LAST)

0x8005.F07C / 0x8005.F064 / 0x8005.F078 / 0x8005.F06C

7	6	5	4	3	2	1	0		
Protect data [7:0]									
Bits	Туре	Function							
7:0	W	Protect data							

Note the specific description is in chapter 9.11.3.6 Write operation

9.11.2.4 RTC Control Register (RTCTRL)

0x8005.F000

05.F000										
7		6	1	5	4	3	2	1	0	
		E١	/TEN		INTEN					CLKSEL
RESE	T		RTC	C Stop						
Bits	Туре	Default	Functio	on						
7:6	-	-	Reserve	ed						
5	R/W	0	RTC Ev	vent Enable.						
			If this bi	it is set high, th	e event signal cou	Id be sent to PML	J for using as a w	ake-up sign	nal. There is	no need
				0	set the INTEN bit					
				event disable						
			1: RTC	event enalbe						
4	R/W	0		terrupt Enable						
				•	ster value meets F	RTC Alarm registe	r's, alarm interrup	ot is generat	ted.	
				rupt disable						
				rupt enable						
3	-	-	Reserve							
2	R/W	0		ock Select						
				•	C clock source will	be connneted to	32768KHz only	for test		
				clock is 1Hz						
				clock is 32768						
1	R/W	0		ounter Register						
				•	TC Counter Regis					
			0	,	he RTC clock still	alive.				
			0: no re:		1					
		4		CNT register r	eset					
0	R/W	1		art / stop	201/11= ala ala i't	our pallod to the O	ook Dividor cod t	han a CL 1/4	111- ion't	da
			0: RTC	•	32KHz clock isn't	supplied to the Ci	ock Divider, and t	nen a CLKI	i Hz Ish t ma	ae.
			1: RTC							
				Siuh						

9.11.2.5 RTC Status Register (RTCSTAT)

0x8005.F004

5.F004										
7	6	5	4	3	2	1	0			
TICK FL	AG	READ FLAG	ALM FLAG							
Bits	Туре	Function								
7:3	-	Reserved								
2	R	TICK Interrupt Status Flag Interrupt signal is generated when TICNT register value meets TIBASE register value. Read only valid and writing this bit to "1" clears this flag. 0: Interrupt was not generated or was cleared. 1: Interrupt was generated.								
1	R	Read Status Flag If this bit is set, RTC CNT Register value is copied into the COPY reigster internally. The system could read the wished value in the COPY register. Read only valid and writing this bit to "1" clears this flag. 0: Read flag was not generated or was cleared. 1: Read flag was generated.								
0	R	Alarm Interrupt S Alarm event inte Read only valid An interrupt is c ALCTRL registe interrupt is made	Status Flag errupt flag is set when and writing this bit to " ontinued for one secon r before clearing the st e again. not generated or was of	l" clears this fla nd. After genera atus bit. If the s	g. ating an interrup	t, you have to clea	ar ALARM enable b	oit in		

9.11.2.6 RTC Second Register (RTCSEC)

Data in RTC counter registers is interpreted in BCD format. For example, if the second register contains 0101[6:4] 1001[3:0], then the contents are interpreted as the value 59 seconds.

0x8005.F008

7	6	5	4	3	2	1	0
RTCSE	EC10 [6:4]					RTCSEC1 [3:0]	
Bits	Туре	Function					
7	-	Reserved					
6:4	R/W	Value for 10 Seconds Unit from 0 to 5					
3:0	R/W	Value for Second Unit from 0 to 9					

9.11.2.7 RTC Minute Register (RTCMIN)

0x8005.F00C

7	6	5	4	3	2	1	0		
RTCMIN	N10 [6:4]					RTCMIN1 [3:0]			
Bits	Туре	Function	Function						
7	-	Reserved							
6:4	R/W	Value for 10 Minutes Unit from 0 to 5							
3:0	R/W	Value for Minute Unit from 0 to 9							

9.11.2.8 RTC Hour Register (RTCHOR)

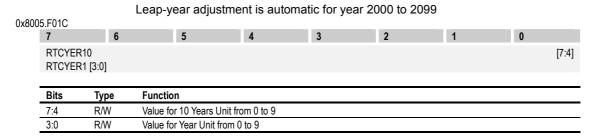
Hour register contents are values expressed in 24 hour mode.

0x800	5.F010		Hour register conte	ints are value	s expressed	111 24 HOUL III	oue.	
	7	6	5	4	3	2	1	0
			RTCHOR10 [5:4]	RTCHOR1 [3:0]				
	Bits	Туре	Function					
	7:6	-	Reserved					
	5:4	R/W	Value for 10 Hours Unit	from 0 to 2				
	3:0	R/W	Value for Hour Unit from 0 to 9					

9.11.2.9 RTC DAY Register (RTCDAY)

0x8005.F014

7	6	5	4	3	2	1	0	
RTCDAY	′10 [5:4]		RTCDA	(1 [3:0]				
Bits	Туре	Function						
7:6	-	Reserved						
5:4	R/W	Value for 10 Days U	nit from 0 to 3					
3:0	R/W	Value for Day Unit fr	om 0 to 9					


9.11.2.10 RTC Month Register (RTCMON)

0x8005.F018

7	6		5	4	3	2	1	0	
RTCMO	N10	RTCMON	1 [3:0]						
Bits	Туре	Functior	I						
7:5	-	Reserved	ł						
4	R/W	Value for	10 Months	Unit from 0 to 1					
3:0	R/W	Value for	Month Uni	t from 0 to 9					

9.11.2.11 RTC Year Register (RTCYER)

9.11.2.12 RTC Day of Week Register (RTCWEK)

The day-of-week register contains values representing the day of week as shown in the following table.

0x8005.F020 2 0 7 6 5 4 3 1 RTCWEK [2:0] Bits Туре Function 7:3 Reserved 2:0 R Value for Weekday Unit from Saturday to Friday Bit 2 Bit 1 Bit 0 Day of week 0 0 0 Saturday 0 0 1 Sunday 0 1 0 Monday 0 Tuesday 1 1 1 0 0 Wednesday 0 1 1 Thursday 0 Friday 1 1

9.11.2.13 RTC Alarm Control Register (ALCTRL)

0x8005.F024

5.F024								
7	6	5		4	3	2	1	0
ALEN ALHOREN	Л	ALMINEN	ALWEKEN	ALSECEN	ALYEREN		ALMONEN	ALDAYEN
Bits	Туре	Function						
7	R/W	before clea again. 0: alarm fur	t is continue	is bit. If the sta				ar ALARM enable bit , an interrupt is made
6	R/W		of Week Ena					
5	R/W	Alarm Year 0: disable 1: enable	Enable					
4	R/W	Alarm Mont 0: disable 1: enable	h Enable					
3	R/W	Alarm Day 0: disable 1: enable	Enable					
2	R/W	Alarm Hour 0: disable 1: enable	Enable					
1	R/W	Alarm Minu 0: disable 1: enable	te Enable					
0	R/W	Alarm Seco If this bit is 0: disable 1: enable		e alarm interruj	ot is generated a	t "00" second.		

9.11.2.14 RTC Alarm Second Register (ALSEC)

0x800	5.F028 7	6	5	4	3	2	1	0	
	ALSEC1	0 [6:4]				ALS	EC1 [3:0]		
	Bits	Туре	Function						
	7	-	Reserved						
	6:4	R/W	Value for 10 Secor	nds Unit from 0 to 5					
	3:0	R/W	Value for Second U	Jnit from 0 to 9					

9.11.2.15 RTC Alarm Minute Register (ALMIN)

0x8005.	FUSC
0.00000.	1020

7	6	5	4	3	2	1	0
ALMIN1	0 [6:4]					ALMIN1 [3:0]	
Bits	Туре	Function					
7	-	Reserved					
6:4	R/W	Value for 10 Minutes U	nit from 0 to 5				
3:0	R/W	Value for Minute Unit from 0 to 9					

9.11.2.16 RTC Alarm Hour Register (ALHOR)

0x800	5.F030							
	7	6	5 4		3	2	1	0
			ALHOR10 [5:4]			ALHOR1 [3:0]		
	Bits	Туре	Function					
	7:6	-	Reserved					
	5:4	R/W	Value for 10 Hours Unit from	0 to 2				
	3:0	R/W	Value for Hour Unit from 0 to	0				

9.11.2.17 RTC Alarm Day Register (ALDAY)

0x8005.F034

0.1 004							
7	6	5	4	3	2	1	0
ALDAY1	10 [5:4]		ALDA	Y1 [3:0]			
Bits	Туре	Function					
7:6	-	Reserved					
5:4	R/W	Value for 10 Days Unit fro	om 0 to 3				
3:0	R/W	Value for Day Unit from 0) to 9				

9.11.2.18 RTC Alarm Month Register (ALMON)

0x800)5.F038							
	7	6	5	4	3	2	1	0
				AL	MON10	ALMON1 [3:0]		
	Bits	Туре	Function					
	7:5		Reserved					
	1.5	-	Reserved					
	4	- R/W	Reserved Value for 10 Month	ns Unit from 0 to 1				

9.11.2.19 RTC Alarm Year Register (ALYER)

0x8005.	FUSC
0.00000.	1000

3:0

R/W

7 7	6	5	4	3	2	1	0	
ALYER1 ALYER1								[7:4]
Bits	Туре	Function						
7:4	R/W	Value for 10 Years U	nit from 0 to 9					

9.11.2.20 RTC Alarm Day of Week Register (ALWEK)

Value for Year Unit from 0 to 9

The day-of-week register contains values representing the day of week as shown in the following table.

7	6	5		4	3	2	1	0
					A	LWEK [2:0]		
Bits	Туре	Function						
7:3	-	Reserved						
2:0	R/W	Value for W	eekday Unit fro	m Saturday to I	Friday			
		Bit 2	Bit 1	Bit 0	Day of week			
		0	0	0	Saturday			
		0	0	1	Sunday			
		0	1	0	Monday			
		0	1	1	Tuesday			
		1	0	0	Wednesday			
		1	0	1	Thursday			

9.11.2.21 RTC Tick Timer Control Register (TICTRL)	9.11.2.21	RTC Tick Timer	Control Register	(TICTRL)
--	-----------	----------------	------------------	----------

0x800	5.F044				
	7	6		5	4
	Т	INTEN		CLKSEL [5:4	4]
	CNTRepe	eat	CNTEN		
	Bits	Туре	Functio	n	
	7	-	Reserve	d	
	6	R/W	Tick Tim	er Interrupt Enal	ble
			0: Interro	upt disable	
			1: Interru	upt enable	
	5:4	R/W	Tick Tim	er Source Clock	Select
			00·256F	-17	

J5.F044							
7	6	5	4	3	2	1	0
	TINTEN	CLKSEL	[5:4]			nPWDN	CNTReset
CNTRe	peat	CNTEN					
Bits	Туре	Function					
7	-	Reserved					
6	R/W	Tick Timer Interrupt E	nable				
		0: Interrupt disable					
		1: Interrupt enable					
5:4	R/W	Tick Timer Source Cl	ock Select				
		00: 256Hz					
		01: 512Hz					
		10: 1024Hz					
		11: 2048Hz					
3	R/W	Tick Timer Power Do	wn mode				
		If this bit is set to "1",	source clock is	not connected in	nto TICK Timer.		
		0: normal mode					
		1: power down mode					
2	R/W	Tick Timer Count Reg	gister Reset				
		0: No reset					
		1: Counter Register F	Reset				
1	R/W	Tick Timer Repeat Me	ode				
0	R/W	Tick Timer Count Ena	able				
		0: Stop Count					
		1: Start Count					

9.11.2.22 RTC Tick Timer Count Register (TICNT)

0x8005.F048

7	6	5	4	3	2	1	0	
TICNT [7:01							
Bits	Туре	Function						
7:0	R	Tick Time Count Valu	e from 0 to 255					

9.11.2.23 RTC Tick Timer Base Register (TIBASE)

0x8005.F04C 7 6 5 4 3 2 1 0 TIBASE [7:0] Bits Function Туре 7:0 R/W Tick Time Base Value from 0 to 255

9.11.3 Operation

9.11.3.1 Read/Write Operation

To read and write the register in RTC, Bit 0 of the RTCTRL register must be set. To display calendar and present time, you (or CPU) should read the data in RTCSEC, RTCMIN, RTCHOR, RTCDAY, RTCWEK, RTCMON, RTCYER registers respectively.

9.11.3.2 Leap Year Generator

This block can determine whether the last date of each month is 28,29,30,31. It is based on data from RTCDAY, RTCMON and RTCYER registers.

9.11.3.3 Alarm Function

Alarm can be set for year, month, day, weekday, hour, minute, and second. Alarm Function is operated in normal mode or power down mode. In power down (deep sleep) mode, the RTC generates wake-up signal (PWAKUP) for activating CPU when Alarm data is same with RTC data. The RTC Alarm Control Register (ALCTRL) determines the alarm enable and the condition of the alarm time setting. An interrupt is continued for one second. After generating an interrupt, you have to clear ALARM enable bit in ALCTRL register before clearing the status bit in RTCSTAT register. If the status bit is just only set low before going by 1 second, and interrupt is made again

9.11.3.4 Backup Battery Operation

When the system down, the RTC must be divided on the CPU. After that the RTC operates by using the backup battery.

9.11.3.5 Tick Time Interrupt

For interrupt request, the RTC includes Tick Time Counter Block, Tick Time Counter can count value up to 255 (tick input frequency is optional. 2048/1024/512/256Hz) The Tick timer also offers interrupt capability including a periodic interval timer.

9.11.3.6 Write operation: Protection

RTC write operation flow

- Protection write enable
- Set high to the CTRLRESET bit in RTCTRLRESET register
- Set low to the CTRLRESET bit in RTCTRLRESET register
- Set high to the RESET bit in RTCTRL register
- Set low to the RESET bit in RTCTRL register
- RTC register setup
- Set low to the RTCStop bit in RTCTRL register for starting
- Protection write disable

*Write Enable: PROTCTRL "high" \rightarrow PROTECT1 "8'hAA" \rightarrow PROTECT2 "8'h48" \rightarrow PROTECT3 "8'h61" \rightarrow PROTECTLAST "8'h99" \rightarrow write enable

*Write Disable: PROTCTRL "low" \rightarrow write disable

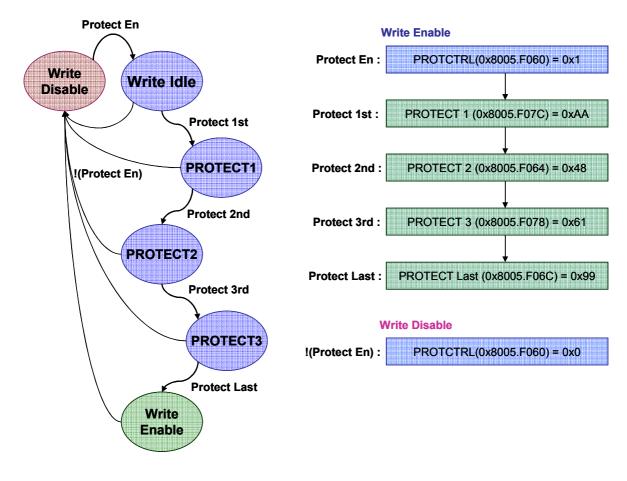


Figure 9-10 Write Protection Diagram

9.11.3.7 Read operation

Read Register: one of them - RTCSEC, RTCMIN, RTCHOR, RTCDAY, RTCMON, RTCYER, RTCWEK

- RTCSTAT[1] "high"
- After reading RTC register (SEC~WEK), RTCSTAT[1] should be cleared.
- If you read RTC register without clearing it, you will be given old values.

9.11.3.8 RTC Setup Flow

RTC initialization flow

- Protection write enable (refer to chapter 9.11.3.6 write operation)
- Set high to the CTRLRESET bit in RTCTRLRESET register
- Set low to the CTRLRESET bit in RTCTRLRESET register
- Set high to the RESET bit in RTCTRL register
- Set low to the RESET bit in RTCTRL register
- Protection write disable (refer to chapter 9.11.3.6 write operation)

RTC operation flow

- Protection write enable (refer to chapter 9.11.3.6 write operation)
- Set high the RTCStop bit in RTCTRL Register for RTC stop
- Set RTC count registers RTCSEC/MIN/HOR/DAY/MON/YER
- Set Alarm control register
- Set Alarm time registers to wished ALSEC/MIN/HOR/DAY/MON/YER/WEK
- Select the EVTEN, INTEN, CLKSEL bits in RTCTRL register
- Set low the RTCStop bit in RTCTRL Register for starting RTC
- Protection write disable (refer to chapter 9.11.3.6 write operation)

TICK timer operation flow

- Protection write enable (refer to chapter 9.11.3.6 write operation)
- Set low the RTCStop bit in RTCTRL Register
- Set TIBASE reigster to wished value
- Select the TINTEN, CLKSEL[1:0], CNTRepeat bits in TICTRL register
- Set the CNTEN bit in TICTRL register for starting TICK timer
- Protection write disable (refer to chapter 9.11.3.6 write operation)

value

9.12 2-Wire Serial Bus Interface

The 2-Wire Serial Bus Interface (2-Wire SBI) is used to communicate external 2-Wire SBI compliant devices such as serial ROM or serial display device, etc. It supports both master and slave operation. The 2-Wire SBI protocol allows the systems designer to interconnect up to 128 different devices using only two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hardware needed to implement the bus is a single pull-up resistor for each of the 2-Wire SBI lines. All devices connected to the bus have individual addresses, and mechanisms for resolving bus contention are inherent in the 2-Wire SBI protocol.

The main features of 2-Wire SBI are :

- Only 2 lines needed to communicate
- Master and Slave operation
- Programmable transfer bit rate at master mode (Up to 400 KHz data transfer speed)
- Independently programmable mask of interrupts
- Multi-master capability
- Device can operate as transmitter or receiver
- Only 7-bit addressing is available

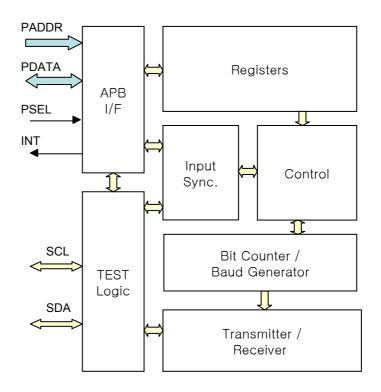


Figure 9-46. Block diagram of 2-Wire SBI

9.12.1 External Signals

Pin Name	Туре	Description
SCL	I/O	Serial clock line SCL
		Serial clock signal pin. Pull-up this pin (open-drain)
SDA	I/O	Serial data line SDA
		Serial data signal pin. Pull-up this pin (open-drain)

Refer to Figure 2-1. 208 Pin diagram.

9.12.2 Registers

Address	Name	Width	Default	Description
0x8006.0000	DATAREG	8	0x0	2-Wire SBI Data Register
0x0806.0004	TARGETREG	8	0x0	2-Wire SBI Target Slave Address Register
0x8006.0008	STATUSREG	16	0x0	2-Wire SBI Status Register
0x8006.000C	SLAVEREG	7	0x0	2-Wire SBI Slave Mode Address Register
0x8006.0010	INTMASKREG	8	0x0	2-Wire SBI Interrupt Mask Register
0x8006.0014	CONFIGREG	8	0x0	2-Wire SBI Configuration Register
0x8006.0018	BAUDREG	8	0xf	2-Wire SBI Baud Rate Control Register

Table 9-16. 2-Wire SBI's Register Summary

9.12.2.1 2-Wire SBI Data Register (DATAREG)

0x8006.0000

7		6	5	4	3	2	1	0
DATA[[7:0]							
Bits	Туре	Functi	on					
7:0	R/W	In trans the last the 2-V	byte received. I Vire SBI interrup	t is writable while	e the 2-Wire SBI i n be interrupt sou	s not in the proc	ess of shifting a b	DATAREG contains yte. This occurs wher dware. The data in

9.12.2.2 2-Wire SBI Target Slave Register (TARGETREG)

0x8006.0004

7	6		5	4	3	2	1	0
TARG	ET ADDR[6:	0]						R/W
Bits	Туре	Function						
7:1	R/W	Target slave These bits a slave device	are the 1 st d		itted in the mas	ter mode and not r	needed in the slave	e mode. These bits are
0	R/W	when '0', m 0 = Master	cifies transf aster transr is operating	er direction. When nits data to slave as transmitter. (as receiver.	e device(master		t slave to transmit d	lata (master Rx) and

9.12.2.3 2-Wire SBI Status Register (STATUSREG)

0x8006.0008

6.0008								
15		14	13	12	11	10	9	8
-		-	-	-	-	-	-	TRANSMITT ER
7		6	5	4	3	2	1	0
TRANS REQ		STOPREQ	EOTREQ	DATAREQ	BUSLOST	BUSBUSY	ACK RECEIVE	MASTER
Bits	Туре	Function						
15-9	R	Reserved.						
8	R	If this bit is 0 = Operate	is transmitter set, it indicates thes as a receiver to es as a transmitter	()	erates as a transr	nitter.		
7	R	Serial trans	sfer requested					
		is addresse STATUSRE 0 = Status i	ed by the master. EG. is cleared or 2-W	ommunication is st This bit can be an ire SBI is not a sla I by winning maste	i interrupt source ave module. (defa	and is cleared by		
6	R	Stop condit						
		This bit is s This bit is c 0 = Status i	et when abnormatic leared by writing is cleared or norr	al stop condition is any value to STA nal stop condition terminated abnor	TUSREG. is detected. (defa		and can be an	interrupt source.
5	R		smission condition					
		This bit is s	et when serial co	mmunication is er	nded by normal st	op condition and	can be an interr	upt source. This
				value to STATUSF				
				al communication		efault)		
4	R	Data reque		terminated norma	iliy.			
+	ĸ	After one b of data (2-V interrupt so 0 = Status i	yte of data is trar Wire SBI is a tran ource and is clear is cleared or seria	nsferred on serial of smitter) or to read ed by writing any al communication data or read the r	the received data value to STATUSI is over. (default)	a (2-Wire SBI is a REG.		pare another byte bit can be an
3	R		ent generated					
-		This bit is s addressed 0 = Status i	et when 2-Wire S by 2-Wire SBI. T	SBI lost mastership his bit can be an in ire SBI grant the c enerated.	nterrupt source ar	nd is cleared by w	riting any value	
2	R	0 = Serial b	et while serial co ous is idle, in this	mmunication is go case any bus mas Vire SBI unit now.	ster can issue a s	tart condition. (det	fault)	
1	R	ACK status This bit is s acknowledg	et if the SDA line ges after DATA cy < is received. (de	is pulled low by a ycle.		evice after ADDR	ESS cycle, or b	y a receiver
0	R		hether 2-Wire SE	31 is configured as the serial bus is ic				
		1 = 2-Wire	SBI is a master.					

The TRANSREQ, DATAREQ, STOPREQ, EOTREQ and BUSLOST bits in this

register are the source of 2-Wire SBI unit's interrupt. When 2-Wire SBI requests an interrupt, the handler reads or writes data according to the TRANSMITTER bit and clear the interrupt by writing STATUSREG. Or in receiver mode, the 2-Wire SBI can terminate serial communication by giving no ACK signal at ACK cycle. This can be done by writing SINGLEBYTE bit before last data packet. Serial communication via 2-Wire serial bus is over when BUSLOST, STOPREQ or EOTREQ bit is set. In this case, the handler must read the STATUSREG after writing STATUSREG.

9.12.2.4 2-Wire SBI Slave Mode Address Register (SLAVEREG)

7		6 5	4	3	2	1	0
-		Slave Address[6:0]					
Bits	Туре	Function					
7	-	Reserved					
	R/W	Slave address of 2-Wir	e SBI itself				

9.12.2.5 2-Wire SBI Interrupt Mask Register (INTMASKREG)

0x8006.0010

.0010												
7		6	5	4	3	2	1	0				
_		_		TRANSREQ	STOPREQ	EOTREQ	DATAREQ	BUSLOST				
				MASK	MASK	MASK	MASK	MASK				
Bits	Туре	Functi	ion									
7-5	-	Reserv	/ed									
4	R/W	TRAN	SREQ interrupt r	nask								
		If this b	oit is set, TRANF	EQ interrupt is maske	d, so no interrupt	is requested.						
		0 = TR	ANSREQ interru	ipt is enabled. (default)							
		1 = TR	ANSREQ interru	ıpt is disabled.								
3	R/W	STOPI	STOPREQ interrupt mask									
		If this b	oit is set, STOPF	EQ interrupt is maske	d, so no interrupt	is requested.						
				t is enabled. (default)								
		1 = ST	OPREQ interrup	t is disabled.								
2	R/W	EOTR	EQ interrupt mas	sk								
				Q interrupt is masked	, so no interrupt is	requested.						
			•	is enabled. (default)								
		1 = EC	TREQ interrupt	is disabled.								
1	R/W		REQ interrupt ma									
			If this bit is set, DATAREQ interrupt is masked, so no interrupt is requested.									
				t is enabled. (default)								
		1 = DA	TAREQ interrup	t is disabled.								
0	R/W	BUSLO	OST interrupt ma	sk								
		If this b	oit is set, BUSLC	ST interrupt is maske	d, so no interrupt i	s requested.						
		0 = BL	ISLOST interrup	t is enabled. (default)								
		1 = BL	ISLOST interrup	t is disabled.								

9.12.2.6 2-Wire SBI Configuration Register (CONFIGREG)

0x8006.0014 7 6 5 4 3 2 1 0 SINGLE FORCE SOFT MULTI RESTART START RESET BYTE BYTE STOP Bits Туре Function 7 R/W RESTART condition (master only) When 2-Wire SBI is configured as master, setting this bit transmits a RESTART condition. 0 = No action is done. (default) 1 = RESTART condition is generated. 6 5 Reserved R/W Software reset command Setting this bit resets 2-Wire SBI module and this bit is auto-cleared. 0 = Normal operation. (default) 1 = Software reset command is issued. 4 R/W Single byte is remained This bit is used in 2 cases. I) If only one byte of data is to be transferred, setting this bit with START bit completes serial communication. II) If more than one byte of data(n bytes) are to be transferred, set this bit after (n-1) bytes are transferred to terminate serial communication. 0 = Indicates more than one byte of data are remained when MULTIBYTE bit is set. (default) 1 = Serial communication is terminated after next DATA cycle. 3 Reserved R/W Multiple bytes transfer (master only) When more than one bytes are to be transferred, set this bit. 0 = Only one byte of data is to be transferred. (default) 1 = Multiple bytes are to be transferred. 1 R/W Forces STOP condition If this bit is set, the STOP condition is transmitted during DATA cycle. That is data transfer is terminated abnormally. 0 = No action is done. (default) 1 = STOP condition is generated during DATA cycle 0 START condition (master only) R/W 2-Wire SBI is a master device and initiates a serial communication. 0 = 2-Wire SBI is a slave device or no action is done. (default) 1 = START condition is generated.

9.12.2.7 2-Wire SBI Baud Rate Control Register (BAUDREG)

7 BAUD	6 RATE[7:0]	5 4 3 2 1							
Bits	Туре	Function							
7:0	R/W	Baud rate control							
		The serial clock (SCL) rate i peripheral clock, PCLK. To operate correctly, the BA			,,,-	PCLK is the freque	ncy of		
		peripheral clock, PCLK.		ould be greater th	an 3.	PCLK is the freque	ncy of		
		peripheral clock, PCLK. To operate correctly, the BA	UDRATE value sh	ould be greater th r value	an 3. Si		ncy of		
		peripheral clock, PCLK. To operate correctly, the BA Baud rate (decimal)	UDRATE value sh Divider	ould be greater th r value /8	an 3. Si	CL rate	ncy of		
		peripheral clock, PCLK. To operate correctly, the BA Baud rate (decimal) 03	UDRATE value sh Dividei F _{PCLK /}	ould be greater th r value /8 /10	an 3. Si 4(3(CL rate 60 KHz	ncy of		

9.12.3 Operation

Both SDA and SCL are bi-directional lines and connected to the positive supply voltage through pull-up resistors. The bus drivers of all 2-Wire SBI-compliant devices are open-drain or open-collector. This implements a wired-AND function which is essential to the operation of the interface. A low level on a 2-Wire SBI bus line is generated when one or more devices output a zero. A high level is output when all 2-Wire SBI devices release bus line, allowing the pull-up resistors to pull the line high. Below figure depicts general form of connecting more than two devices to the serial bus.

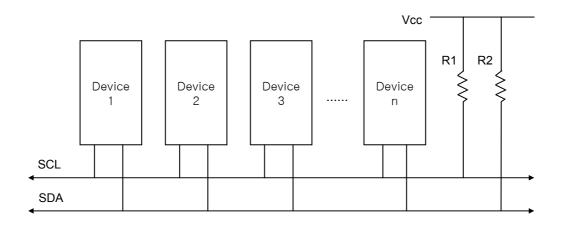


Figure 9-47. Connection of devices to the 2-Wire serial bus

9.12.3.1 Transferring Bits on 2-Wire Serial Bus

Each data bit transferred on 2-Wire serial bus is accompanied by a pulse on the clock line, SCL. The level of the data line must be stable when the clock line is high. The only exception to this rule is for generating start and stop conditions.

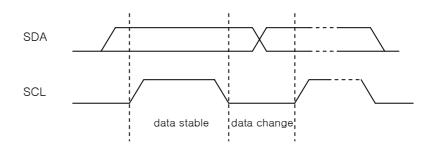


Figure 9-48. Data validity

9.12.3.2 START and STOP Conditions of 2-Wire SBI

The master initiates and terminates a data transfer. The serial communication is initiated when the master issues a START condition on the bus, and it is terminated when the master issues a STOP condition. Between a START and a STOP condition, the bus is considered busy, and no other master is allowed to try to gain the ownership of the bus.

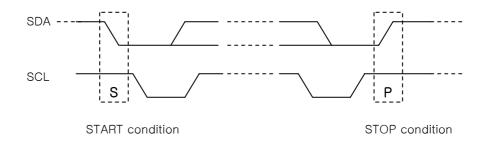
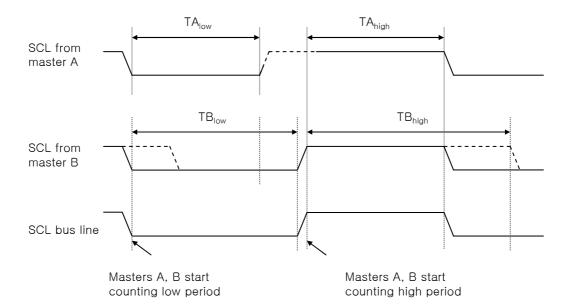


Figure 9-49. START and STOP conditions

Before STOP condition is detected, a master device can issue a RESTART condition which is identical to START condition and is symbolized as Sr.



9.12.3.3 Multi-master bus systems, arbitration and synchronization

The 2-Wire SBI protocol allows bus systems with several masters. Special concerns have been taken in order to ensure that transmissions will proceed as normal, even if more than two masters initiate transmission at the same time. In that case, two problems arise in multi-master bus systems :

- An algorithm must be implemented allowing only one of the masters to complete the transmission. All other masters must stop transmission when they know that they have lost the bus ownership. This process is called arbitration. When a contending master finds out that it has lost the arbitration process, it must immediately switch to slave mode to check whether it is being addressed by the winning master. The fact that multiple masters have started transmission at the same time should not be detectable to the slaves, i.e., the data being transferred on the bus must not be corrupted.
- Different masters may use different SCL frequencies. A scheme must be devised to synchronize the serial clocks from all masters, in order to let the transmission proceed.

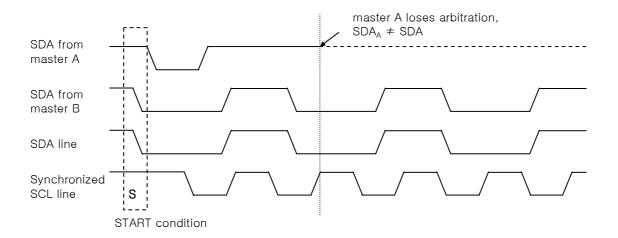

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one from the master with the shortest high period. The low period of the combined clock is equal to the low period of the master with the longest low period. Note that all masters checks the SCL line, effectively starting to count their SCL high and low time-out periods when the combined SCL line goes high or low, respectively.

Figure 9-50. SCL synchronization between multiple masters

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting data. If the value read from the SDA line does not match the value the master had output, it has lost the arbitration. Note that a master can only lose arbitration when it outputs a high SDA value while another master outputs a low value. The losing master must immediately go to slave mode, checking if it is being

addressed by the winning master. The SDA line should be left high, but losing masters are allowed to generate a clock signal until the end of the current data or address packet. Arbitration will continue until only one master remains, and this may take many bits. If several masters are trying to address the same slave, arbitration will continue into the data packet.

Figure 9-51. Arbitration between two masters

During serial communication, the arbitration procedure is still in progress at the moment when a RESTART condition or a STOP condition is transmitted to the serial bus. If it's possible for such a situation to occur, the masters involved must send this RESTART condition or STOP condition at the same position in the format frame. In other words, arbitration is not allowed between :

- A RESTART condition and a data bit
- A STOP condition and a data bit
- A RESTART condition and a STOP condition.

Slaves are not involved in the arbitration procedure.

9.12.3.4 Serial communication

The data transfer on 2-Wire serial bus is performed as depicted in the following figure. First, the master device examines the serial bus lines are available. When the serial bus is not busy, the master transmits a START condition and the first data packet which are composed of 7 address bits and, one READ/WRITE control bit. And then, the slave device addressed by the master device acknowledges by pulling SDA line low in the ninth SCL cycle (ACK cycle). If the addressed slave device does not exist or is busy doing other tasks, the serial communication is terminated and the SDA line is left high in the ACK cycle.

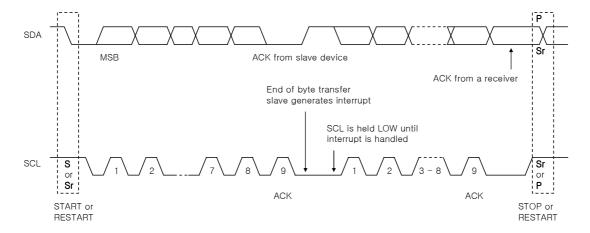


Figure 9-52. Address and data packet of 2-Wire SBI

After data transfer is ended, the master transmits a STOP condition or RESTART condition. Note that between a START and a STOP condition, all data packet is composed of 8 bits data and one ACK bit. The first data packet after a START or RESTART condition is an address packet which is composed of 7 address bits and one R/W control bit. And all address and data packets are transmitted MSB first.

A transfer is basically consists of a START condition, a address packet, one or more data packets and a STOP condition. ADDRESS cycle is the cycle while address packet is transferred and DATA cycle is the cycle while data packet is transferred. And address packet is the 1st 9-bit data after START condition, and data packets are 9-bit data consisting of 8-bit data byte and one bit ACK

Either in ADDRESS or DATA cycle, the master generates the clock and START and STOP conditions, while the receiver is responsible for acknowledging the reception. An Acknowledge, ACK is signaled by the receiver pulling the SDA line low during the ninth SCL cycle. If the receiver leaves the SDA line high, a NACK is signaled. When the receiver has received the last byte, or for some reason cannot receive any more bytes, it should inform the transmitter by sending a NACK after the final byte.

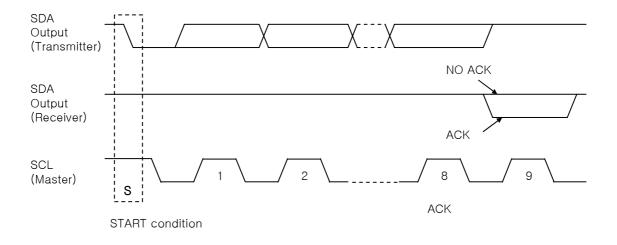
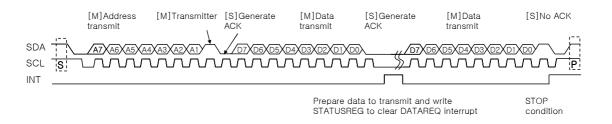


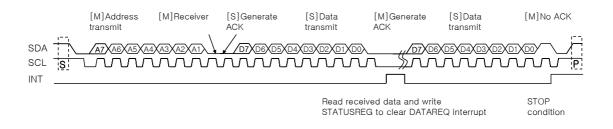
Figure 9-53. ACK signal generation


In HMS30C7210, the address packet comes from TARGETREG when configured as master mode. And there are 4 operating modes internally according to transfer direction and bus mastership. The individual operating sequence is stated below. All cases are stated assuming interrupt mode operation.

Master transmitter

- Decide target slave device to which 2-Wire SBI wants to transmit data and write 7-bit address and 1-bit R/W control bit to TARGETREG. The value written in TARGETREG is the 1st 8-bit data (address packet) to be transmitted.
- Configure BAUDREG to select SCL frequency.
- Write 2nd 8-bit data (1st data packet) to transmit to DATAREG.
- Enable interrupt sources by writing INTMASKREG. Assume all interrupt sources are enabled through out this sequence.
- Generate START condition. This is done by setting both START bit and MULTIBYTE bit in CONFIGREG. If only one byte of data is need to be transmitted, set both the START bit and SINGLEBYTE bit in CONFIGREG. In this case, an EOT interrupt is requested after 1st data packet and the below steps are needless.
- Wait ACK from addressed slave after transmitting address packet consisting of 7bit address and 1-bit R/W control bit. Step 6 is done by 2-Wire SBI unit not by software.
- If 2-Wire SBI receives an ACK for address packet, the 1st data packet is transmitted and DATAREQ interrupt is requested. The interrupt handler prepares next data to transmit and write STATUS register to clear interrupt and proceed to DATA cycle. And then wait next DATAREQ interrupt. If no ACK is signaled for address packet, serial communication is terminated and BUSLOST interrupt is requested. In this case, read STATUSREG to release serial bus after writing STATUSREG.
- If 2-Wire SBI receives an ACK for data packet, DATAREQ interrupt is requested. The interrupt handler writes next data to transmit into DATAREG and clears interrupt by writing STATUSREG. Termination of serial communication is done in 2 ways. One method is by software decision. If there are n bytes of data packet to transmit, software sets SINGLEBYTE bit in CONFIGREG after (n-1)th data packets are transmitted. While changing CONFIGREG, START bit must preserve previous value and MULTIBYTE bit must be cleared simultaneously. The other method is based on ACK signal. If no ACK for data packet is received, serial communication is terminated and an EOT interrupt is requested. In both cases, read STATUSREG to release serial bus after writing STATUSREG. Repeat step 8 until serial communication is over.

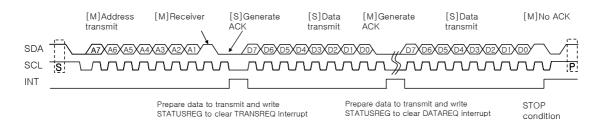
The above steps are normally used when 2-Wire SBI is configures as master transmitter. Even if ACK for a data packet is received, serial communication can be terminated by setting STOP bit in CONFIGREG. The next figure depicts above steps.


Figure 9-54. Waveform when 2-Wire SBI is master transmitter

Master receiver

- Decide target slave device from which 2-Wire SBI wants to receive data and write 7-bit address and 1-bit R/W control bit to TARGETREG. The value written in TARGETREG is the 1st 8-bit data (address packet) to be transmitted.
- Configure BAUDREG to select SCL frequency.
- Enable interrupt sources by writing INTMASKREG. Assume all interrupt sources are enabled through out this sequence.
- Generate START condition. This is done setting both START bit and MULTIBYTE bit in CONFIGREG. If only one byte of data is need to be received, set both the SIGNLEBYTE bit and START bit in CONFIGREG. In this case, an EOT interrupt is requested after 1st data packet and the below steps are needless.
- Wait ACK from addressed slave after transmitting address packet consisting of 7bit address and 1-bit R/W control bit.
- If 2-Wire SBI receives an ACK for address packet, the 1st data packet is received and DATAREQ interrupt is requested. The interrupt handler prepares next data to transmit and write any value STATUSREG to clear interrupt and proceed to DATA cycle. And then wait next DATAREQ interrupt. If no ACK is signaled for address packet, serial communication is terminated and BUSLOST interrupt is requested. In this case, read STATUSREG to release serial bus after writing STATUSREG.
- When DATAREQ interrupt is requested, 2-Wire SBI reads the DATAREG which contains the recently received 8-bit data packet. If there're more data to be received from the slave, the interrupt handler need only to clear interrupt by writing the STATUSREG. But if next data packet is the last data packet or 2-Wire SBI can't receive more than one data for some reason, 2-Wire SBI signals no ACK at the next data packet by setting the SINGLEBYTE bit in CONFIGREG. While changing CONFIGREG, START bit must preserve previous value and MULTIBYTE bit must be cleared simultaneously. When 2-Wire SBI compliant transmitter does not receive an ACK at ACK cycle, the serial communication ends automatically and the 2-Wire SBI of HMS30C7210 request an EOT interrupt. In this case, read STATUSREG to free serial bus after writing STATUSREG. Repeat step 7 until serial communication is over.

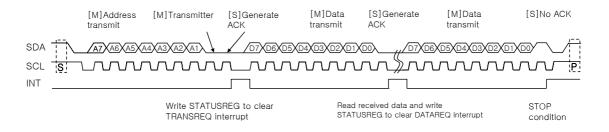
The above steps are normally used when 2-Wire SBI is configures as master receiver. The next figure depicts above steps.


Figure 9-55. Waveform when 2-Wire SBI is master receiver

Slave transmitter

- Enable interrupt sources by writing INTMASKREG. Assume all interrupt sources are enabled through out this sequence. By default, TRANSREQ interrupt must be enabled to use interrupt mode.
- Wait for START condition from external master device.
- If 7-bits address of address packet matches SLAVEREG, ACK signal for address packet is transmitted and TRANSREQ interrupt is requested. When TRANSREQ interrupt is requested, read the STATUSREG and verify that the master requires data from 2-Wire SBI by checking the TRANSMITTER bit in STATUSREG.
- Write the 1st data into DATAREG and clear interrupt by writing STATUSREG.
- After transmitting data packet, 2-Wire SBI checks the ACK signal at ACK cycle. If no ACK is received, the serial communication ends and an EOT interrupt is requested. In this case, read STATUSREG to release serial bus after writing STATUSREG. If ACK signal is received, 2-Wire SBI requests an DATAREQ interrupt. In this case, write the next data to transmit into DATAREG and clear interrupt by writing the STATUSREG. Repeat this step until serial communication is over.

The above steps are normally used when 2-Wire SBI is configures as slave transmitter. The next figure depicts above steps.


Figure 9-56. Waveform when 2-Wire SBI is slave transmitter

Slave receiver

- Enable interrupt sources by writing INTMASKREG. Assume all interrupt sources are enabled through out this sequence. By default, TRANSREQ interrupt must be enabled to use interrupt mode.
- Wait for START condition from external master device.
- If 7-bits address of address packet matches SLAVEREG, ACK signal for address packet is transmitted and TRANSREQ interrupt is requested. When TRANSREQ interrupt is requested, read the STATUSREG and verify that the master wants to transmit data to 2-Wire SBI by checking the TRANSMITTER bit in STATUSREG.
- If no more than one data is acceptable, set the SINGLEBYTE bit in CONFIGREG to transmit no ACK at next data packet, then an EOT interrupt is requested and serial communication is over. In this case, step 5 is needless and read the STATUSREG to release the serial bus after clearing the interrupt by writing the STATUSREG. Or 2-Wire SBI is capable of more than one data packet, just clear interrupt by writing STATUSREG and receive 1st data.
- When DATAREQ interrupt is requested, 2-Wire SBI reads the DATAREG which contains the recently received 8-bit data packet. If there're more data to be received from the master, the interrupt handler need only to clear interrupt by writing the STATUSREG. But if next data packet is the last data packet or 2-Wire SBI can't receive more than one data for some reason, 2-Wire SBI signals no ACK at the next data packet by setting the SINGLEBYTE bit in CONFIGREG. When 2-Wire SBI compliant transmitter does not receive an ACK at ACK cycle, the serial communication ends automatically and the 2-Wire SBI of HMS30C7210 request an EOT interrupt. In this case, read STATUSREG to release serial bus after writing STATUSREG. Repeat step 5 until serial communication is over.

The above steps are normally used when 2-Wire SBI is configures as slave receiver. The next figure depicts above steps.

Figure 9-57. Waveform when 2-Wire SBI is slave receiver

9.13 Matrix Keyboard Interface Controller

The Matrix keyboard interface controller is an AMBA slave module that connects to the Advanced Peripheral Bus (APB). For more information about AMBA, please refer to the AMBA Specification (ARM IHI 0001).

The interface controller is designed to communicate with the external keyboard matrix. The keyboard interface uses the pins KSCANI [5:0] and KSCANO [5:0]. It is possible to select one of three scan clock frequencies.

The main features of keyboard controller are :

- Controllable scanning frequency
- Maximum 6x6 keyboard matrix is supported
- Key value is stored in KBVR0/1

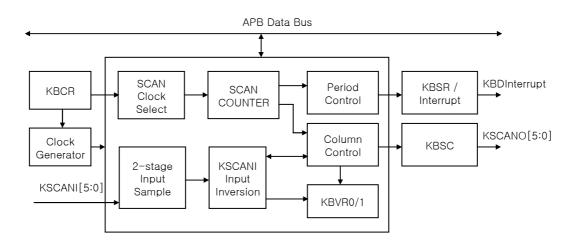


Figure 9-58. Block diagram of keyboard controller

9.13.1 External Signals

Pin Name	Туре	Description
KSCANO [5:0]	0	Column enable signals to keyboard matrix Key input is valid only when KSCANO pin is LOW. The outputs of KSCANO pins act like ring counter so as to cover all columns of keyboard matrix. If pins are used for keyboard function, pull- up resistors need to be connected.
KSCANI [5:0]	I	Row inputs from keyboard matrix If pins are used for keyboard function, pull-up resistors need to be connected. Normally each KSCANI line maintains HIGH level because of pull-up resistor so, LOW input is detected as "key pressed".

Refer to Figure 2-1. 208 Pin diagram.

9.13.2 Registers

Address	Name	Width	Default	Description
0x8006.1000	KBCR	8	0x0	Keyboard Configuration Register
0x8006.1004	KBSC	6	0x0	Keyboard Scan Out Register
0x8006.100C	KBVR0	32	0x0	Keyboard Value Register 0
0x8006.1010	KBVR1	16	0x0	Keyboard Value Register 1
0x8006.1018	KBSR	2	0x0	Keyboard Status Register

Table 9-17. Matrix Keyboard Interface Controller Register Summary

9.13.2.1 Keyboard Configuration Register (KBCR)

0x8006.1000

5.1000	_									
7					2	1	0			
SCAN ENABI	LE				nPOWER DOWN	CLKSEL				
Bits	Туре	Function								
7	R/W	Setting this nPOWERI nPOWERI pressed in 0 = Stops	scanning enable s bit enables key input scanning DOWN bits must be set to start H DOWN bits are cleared to stop k formation. Keyboard interrupt is key input scanning. key input scanning.	ey input scanning. It ey input scanning. It i	is recommended is software's resp	that both SCAN onsibility to de-b	ENABLE and			
6:3	-	Reserved.	e bits to zero.							
2	R/W	Activates k 0 = Indicat	Power down mode (Active low) Activates keyboard controller module by supplying PCLK. 0 = Indicates power down mode and internal operating clock signal is always '0'. (default) 1 = Clock generator unit supplies incoming PCLK to keyboard controller module.							
1:0	R/W	Scan clock	s select bits ols the operating clock of scanni	· · · · · ·						
		Value	Scan clock source		Scan Rate					
		00	Reserved		Not available					
		01	PCLK / 128 (28KHz)		138 times / sec					
		10	PCLK / 256 (14KHz)		69 times / sec					
		11	PCLK / 512 (7KHz)		34 times / sec					

9.13.2.2 Keyboard Scan Out Register(KBSC)

0x8006.1004

6.1004		5 4 3 2 1 0							
		SCANOUT							
Bits	R/W	Function							
5	R	Indicates that 1 st column is being scanned. When low, the pressed KSCANI inputs are stored in KBVR0[29:24]. This bit is directly connected to KSCANO[5].							
		0 = 1st column is being scanned. (default)							
		1 = 1 st column is not being scanned.							
4	R	Indicates that 2 nd column is being scanned.							
		When low, the pressed KSCANI inputs are stored in KBVR0[21:16]. This bit is directly connected to KSCANO[4].							
		0 = 2 nd line will be scanned. (default)							
		1 = 2 nd column is not being scanned.							
3	R	Indicates that 3 rd column is being scanned.							
		When low, the pressed KSCANI inputs are stored in KBVR0[13:8]. This bit is directly connected to KSCANO[3].							
		$0 = 3^{rd}$ line will be scanned. (default)							
		1 = 3 rd column is not being scanned.							
2	R	Indicates that 4 th column is being scanned.							
		When low, the pressed KSCANI inputs are stored in KBVR0[5:0]. This bit is directly connected to KSCANO[2].							
		0 = 4 th line will be scanned. (default)							
1	R	1 = 4 th column is not being scanned.							
I	ĸ	Indicates that 5 th column is being scanned. When low, the pressed KSCANI inputs are stored in KBVR1[13:8]. This bit is directly connected to KSCANO[1].							
		$0 = 5^{\text{th}}$ line will be scanned. (default)							
		$1 = 5^{\text{th}}$ column is not being scanned.							
0	R	Indicates that 6 th column is being scanned.							
U	IX.	When low, the pressed KSCANI inputs are stored in KBVR1[5:0]. This bit is directly connected to KSCANO[0].							
		$0 = 6^{\text{m}}$ line will be scanned. (default)							
		$1 = 6^{th}$ column is not being scanned.							

9.13.2.3 Keyboard Value Register (KBVR0)

0x8006.100C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1st co	lumn KSC	CANI [5:0	0]					2 nd cc	lumn KS	CANI [5:	:0]		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		3 rd co	lumn KS(CANI [5:0	0]					4 th co	lumn KS	CANI [5:	0]		
Bits	Туре	F	unction												
31:30	R	R	Reserved												
29:24	R	K K 0	he presse (SCANI[5: (BVR0[29 = KSCAN = The co	:0] maps):26] bec NI input i	to KBVI omes '1' is presse	R0[29:26 d while ł]. If any p	in of KS [5] is HIC	•			•	0		is LOV
23:22	R		Reserved												
21:16	R	К К 0	The presse (SCANI[5: (BVR0[21) = KSCAN = The co	:0] maps :16] bec NI input i	to KBVI omes '1' is presse	R0[21:16 d while ł]. If any p (SCANO	in of KS [4] is HIC	•			•	0		is LOV
15:14	R	R	Reserved												
13:8	R	К К 0	The presse (SCANI[5 (BVR0[13 = KSCAI = The co	:0] maps 3:8] beco NI input i	to KBVI mes '1' . is presse	R0[13:8]. d while ł	If any pi	n of KSC [3] is HIC		,					is LOV
7:6	R	R	Reserved												
5:0	R	The pressed KSCANI during KSCANO[2] is LOW. KSCANI[5:0] maps to KBVR0[5:0]. If any pin of KSCANI[5:0] is LOW, the corresponding bit position in KBVR0[5:0 becomes '1'. 0 = KSCANI input is pressed while KSCANO[2] is HIGH or no KSCANI input is pressed while KSCANO[2] is LOW 1 = The corresponding KSCANI input is pressed.													

9.13.2.4 Keyboard Value Register (KBVR1)

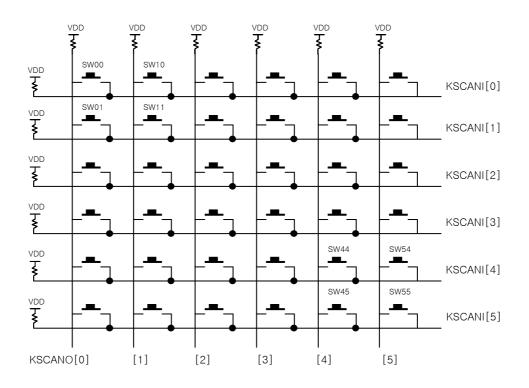
0x8006.1010

. 1010							
15	14	13 12 11 10 9 8 7 6 5 4 3 2 1 0					
		5th column KSCANI [5:0] 6 th column KSCANI [5:0]					
Bits	Туре	Function					
15:14	R	Reserved					
13:8	R	The pressed KSCANI during KSCANO[1] is LOW. KSCANI[5:0] maps to KBVR1[13:8]. If any pin of KSCANI[5:0] is LOW, the corresponding bit position in KBVR0[13:8] becomes '1'. 0 = KSCANI input is pressed while KSCANO[1] is HIGH or no KSCANI input is pressed while KSCANO[1] is LOW. 1 = The corresponding KSCANI input is pressed.					
7:6	R	Reserved					
5:0	R	The pressed KSCANI during KSCANO[0] is LOW. KSCANI[5:0] maps to KBVR1[5:0]. If any pin of KSCANI[5:0] is LOW, the corresponding bit position in KBVR0[5:0 becomes '1'. 0 = KSCANI input is pressed while KSCANO[0] is HIGH or no KSCANI input is pressed while KSCANO[0] is LOW 1 = The corresponding KSCANI input is pressed.					

9.13.2.5 Keyboard Status Register (KBSR)

0x8006.1018

			1	0
			WAKEUP	KEYINTR


Bits	Туре	Function
7:2	-	Reserved
1	R	Wake up status This bit is set if any key is pressed when SCANENABLE in KBCR is LOW. This bit is a source of keyboard interrupt, which is generated in all PMU states except deep sleep mode. This bit is cleared when non-zero value is written in this register. 0 = Key scanning is enabled or no key is pressed when SCANENABLE is LOW. (default) 1 = There is at least one point pressed at matrix keyboard when SCANENABLE is LOW.
0	R	End of one scan period If one scan period is over, this flag is set and KBVR0/1 contains all the pressed points of matrix keyboard. When this bit is set, a keyboard interrupt is requested. This bit is cleared when non-zero value is written in this register. 0 = KBSR is cleared or key scanning is going on. (default) 1 = Indicates that KBVR0/1 are loaded with the value of keys pressed and software should read KBVR0/1 registers.

9.13.3 Operation

9.13.3.1 Conceptual configuration of keyboard matrix

Keyboards use a matrix with the rows and columns made up of wires. Each key acts like a switch. When a key is pressed, a column wire(called KSCANO) makes contact with a row wire(called KSCANI) and completes a circuit. The keyboard controller detects this closed circuit and registers it as a key press. Here is a simple keyboard matrix. The symbol KSCANO and KSCANI are same as those of HMS30C7210. At reset or when key scanning is not enabled, all KSCANO lines of HMS30C7210 are LOW to generate WAKEUP event in KBSR.

Figure 9-59. Keyboard matrix configuration

The above keyboard matrix works 'cause only one of KSCANO lines are LOW while key scanning is enabled. If a key SW00 is pressed when KSCANO[0] is LOW, the keyboard controller detects that KSCANI[0] input is active. Similarly If two keys SW10, SW11 are pressed when KSCANO[1] is LOW, the controller detects that KSCANI[1:0] inputs are active. Note that pull-up resistors are connected to KSCANI and KSCANO lines. If no switch is pressed, KSCANI maintain HIGH level and the controller knows that there's no key input. If any switch is pressed, the corresponding KSCANI line is changed to LOW level and the controller knows that there are some keys pressed and stores the position of KSCANI to KBVR0/1 register. The pressed key position is stored as '1' in KBVR0/1.

9.13.3.2 KSCANO output timing

When SCANENABLE is set, the outputs of keyboard controller, KSCANO[5:0], acts like ring counter. In other words, during 1 scan period only one of KSCANO lines is LOW at one time(Column period). This enables KSCANI[n] is detected as unique switch during 1 scan period.

The following figure shows the output waveform of KSCANO lines. Once SCANENABLE in KBCR is set according to scan rate which is controlled by CLKSEL, KSCANO[5] is LOW at 1st column period and then KSCANO[4], KSCANO[3], KSCANO[2], KSCANO[1], KSCANO[0] are LOW periodically. In 6x6 matrix configuration, only 6 column periods are needed in one scan period. But there are 8 column periods and this makes no problem using keyboard matrix.

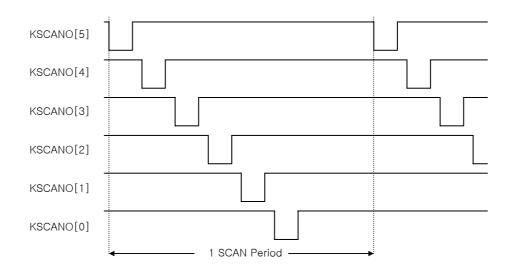


Figure 9-60. KSCANO output timing

9.13.3.3 Scanning rate selection and clock divider

The scan rate is controlled by CLKSEL in KBCR.

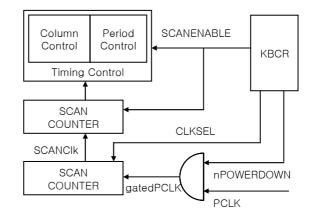


Figure 9-61. Clock divider of keyboard controller

Like other slow APB peripherals, keyboard controller is clocked by PCLK. Key scanning is much like mechanic process and PCLK is very fast for that purpose. So the main clock of SCAN COUNTER unit which is used to control column and scan period is SCANCIk controlled by CLKSEL bits.

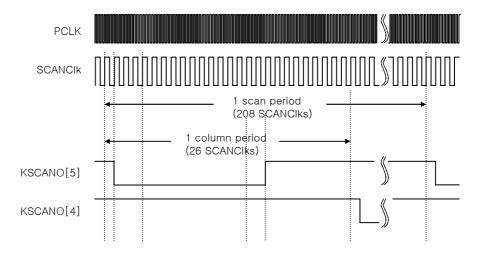
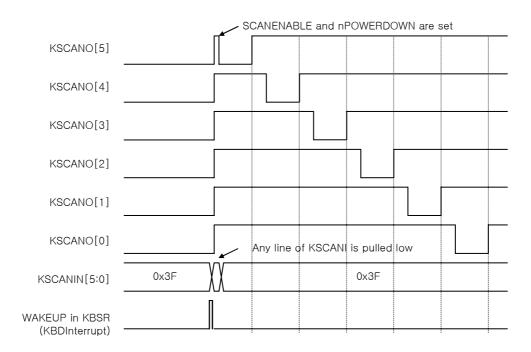


Figure 9-62. Key scan period and column period

SCANClk is achieved from output of flip-flops(SCANCOUNTER) which are clocked by PCLK. These flip-flops are asynchronously cleared when SCANENABLE is '0', and increments by one when SCANENABLE is '1'. The SCANCOUNTER is 9-bit(8 to 0) counter and the output is the source of SCANClk.

1 column is composed of 26 SCANClks and 1 scan period is composed of 8 columns, therefore 1 scan period is composed of 208 SCANClks.

The following table shows how the scan rate is calculated from CLKSEL. For example, CLKSEL is "01", the output of 7th flip-flop of SCANCOUNTER counter is the source of


SCANCIk, so DIVIDER value becomes "128" because output of 7th flip-flop makes 1 clock pulse after 128 PCLKs.

DIVIDER	FSCANCIK = FPCLK / DIVIDER	SCAN RATE
128	Approximately 28 KHz	138 times / sec
256	Approximately 14 KHz	69 times / sec
512	Approximately 7KHz	34 times / sec
	128 256	128 Approximately 28 KHz 256 Approximately 14 KHz

Table 9-18. Scan rate calculation from CLKSEL

9.13.3.4 Scanning sequence of key inputs

As stated previously KSCANI lines are detected pressed only when corresponding KSCANO line is LOW.

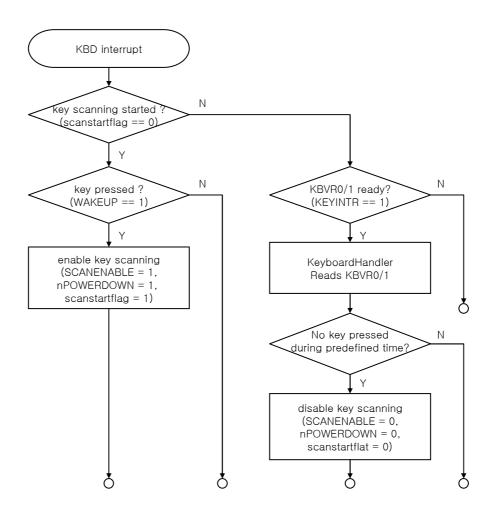


Figure 9-63. Wakeup interrupt & Key scanning enabled

At reset or when key scanning is not enabled, all KSCANO lines are LOW. If any switch is pressed WAKEUP in KBSR is set and interrupt is requested. The keyboard interrupt handler usually enables key scanning by setting both SCANENABLE and nPOWERDOWN in KBCR. Simultaneously KSCANO lines start making column period as in the previous figure.

The following figure shows example of interrupt handler routine related to keyboard interrupt.

The symbol \bigotimes means exit handler routine and scanstartflag is '0' by default

Figure 9-64. A flow chart of setting keyboard controller

The above flow chart can be summarized as follows :

- See if key scanning is started already by checking scanstartflag. If scanstartflag is not set, go to step 4.
- Check WAKEUP in KBSR. (interrupt)
- Set SCANENABLE, nPOWERDOWN and scanstartflag to enable key scanning and exit handler routine. (KBCR)
- Check KEYINTR in KBSR. (interrupt)
- Read KBVR0/1.
- If no key is pressed for predefined time, disable key scanning and exit handler routine.
- To continue key scanning, just exit handler routine and wait next keyboard interrupt.

The following figure shows internal timing diagram of keyboard controller.

Note that LOW value of KSCANI is detected as "key pressed" and stored in KBVR0/1 as binary '1'. The KSCANI lines are sampled 2 times during LOW phase of each KSCANO line and if 2 sampled values are different, the KSCANI line is considered as not pressed. 2 times sampling is simplified de-bouncing for input pin KSCANI lines.

When one scan period is over, the KEYINTR bit in KBSR is set and an interrupt is requested. Because the timing of KSCANO is periodic after SCANENABLE is set, Software must handle the requested interrupt by reading KBVR0/1 before KSCANO[5] of next scan period makes an rising edge. This time limit is symbolized as t_{INT} In the following figure. As 26 SCANCIks makes one column period, t_{INT} is approximately 3.7ms when CLKSEL is "01".

CLKSEL		t _{int}
01	28 KHz	Approximately 0.9 ms
10	14 KHz	Approximately 1.8 ms
11	7 KHz	Approximately 3.7 ms

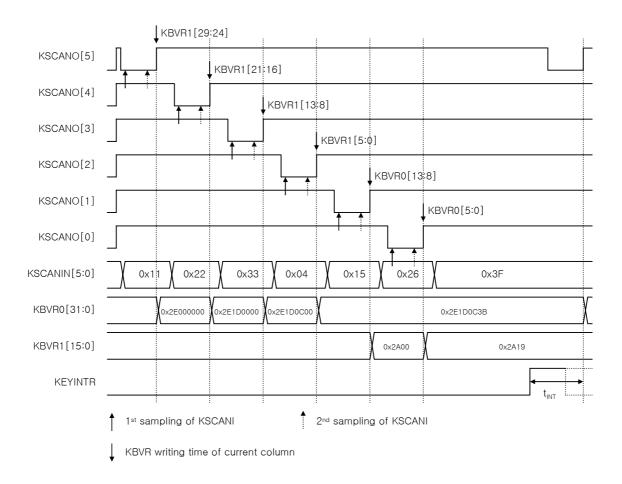


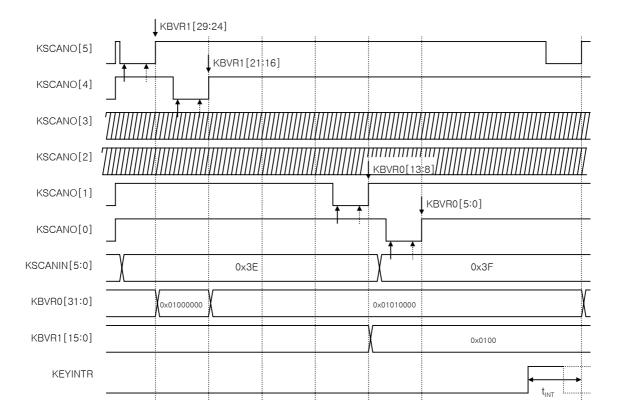
Table 9-19. Estimated tINTR according to CLKSEL

Figure 9-65. KBVR0/1 write timing

9.13.3.5 Usage and restrictions

The maximum size of keyboard matrix that can be used is $6x6(KSCANI \times KSCANO)$. But there are some restrictions for KSCANI pins. The restrictions result in minimum matrix size of 4x1.

Before using keyboard matrix, pull-up resistors must be connected to KSCANI and KSCANO lines that are used for keyboard function.


Using some of KSCANO :

Even if keyboard matrix is connected to HMS30C7210, each KSCANO line can be configured for GPIO. The below table shows possible configuration for KSCANO pins. The 'O' means KSCANO[n] can be used for that function (Keyboard or GPIO) in the table where n is 0,1,2,3,4 or 5.

	KSCANO[0]	KSCANO[1]	KSCANO[2]	KSCANO[3]	KSCANO[4]	KSCANO[5]
Keyboard	O (pull-up)					
GPIO	0	0	0	0	0	0

Table 9-20. Possible configuration of KSCANO pins when keyboard matrix is connected

In the following figure, KSCANO[3:2] are used for GPIOs and only KSCANO[5:4, 1:0] are used for keyboard function. This means that switches sw3x and sw2x(see keyboard matrix configuration figure) are ignored and not stored in KBVR0/1 when pressed. Note that KSCANO[3:2] are always HIGH in the figure but these pins can change level 'cause these pins are not connected to keyboard matrix.

Figure 9-66. KSCANO[3:2] are configured for GPIO

Using some of KSCANI :

Not like KSCANO, some KSCANI pins must be configured for keyboard function to use keyboard matrix. That is, KSCANI[3:0] must be configured for keyboard function. But KSCANI[5:4] can be configured for GPIO or keyboard function.

The below table shows possible configuration for KSCANI pins. In the table below, the 'O' means KSCANO[n] can be used for that function (Keyboard or GPIO) and 'X' means that KSCANO[n] cannot be used for GPIO when keyboard function is enabled where n is 0,1,2,3,4 or 5.

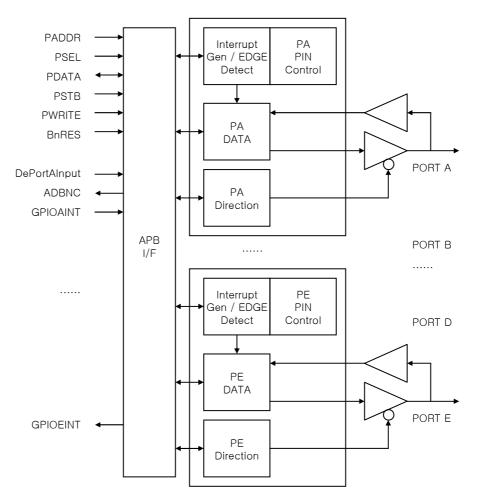

	KSCANI[0]	KSCANI[1]	KSCANI[2]	KSCANI[3]	KSCANI[4]	KSCANI[5]
Keyboard	O (pull-up)					
GPIO	Х	Х	Х	Х	0	0

Table 9-21. Possible configuration of KSCANI pins when keyboard matrix is connected

9.14 GPIO

This document describes the Programmable Input /Output module (PIO). This is an AMBA slave module that connects to the Advanced Peripheral Bus (APB). For more information about AMBA, please refer to the AMBA Specification (ARM IHI 0001). Most port pins are multiplexed with alternate functions for the peripheral features on the device. How each alternate function interferes with the port pin is described in "Operation" section. Refer to the individual module sections for a full description of the alternate function. The I/O status of each port is not changed during "SLEEP" or "DEEPSLEEP" mode of PMU.

DePortAInput : Port A inputs de-bounced by PMU unit ADBNC : Port A de-bounce enable

Figure 9-67. Block diagram of GPIO

9.14.1 External Signals

Pin Name	Туре	Description
KSCANI [5:0]	1/0	General Port A [5:0]
KSCANO [5:0]	1/0	General Port A [11:6]
UART5Tx	I/O	General Port B [27]
UART5Rx	1/0	General Port B [26]
nUDCD	1/0	General Port B [25]
nUDSR	1/0	General Port B [24]
nURTS	1/0	General Port B [23]
nUCTS	1/0	General Port B [22]
nUDTR	1/0	General Port B [21]
nURING	I/O	General Port B [20]
TouchYN	I/O	General Port B [19]
TouchXN	I/O	General Port B [18]
TouchYP	I/O	General Port B [17]
TouchXP	I/O	General Port B [16]
GPIOB15	I/O	General Port B [15]
GPIOB14	I/O	General Port B [14]
IrDA4Tx	I/O	General Port B [13]
IrDA4Rx	I/O	General Port B [12]
UART3Tx	I/O	General Port B [11]
UART3Rx	I/O	General Port B [10]
UART2Tx	I/O	General Port B [9]
UART2Rx	I/O	General Port B [8]
SCPRES[1]	I/O	General Port B [7]
SCCLK[1]	I/O	General Port B [6]
SCIO[1]	I/O	General Port B [5]
SCRST[1]	I/O	General Port B [4]
SCPRES[0]	I/O	General Port B [3]
SCCLK[0]	I/O	General Port B [2]
SCIO[0]	I/O	General Port B [1]
SCRST[0]	I/O	General Port B [0]
SMD[7:0]	I/O	General Port C [15:8]
nSMWP	I/O	General Port C [7]
nSMWE	I/O	General Port C [6]
nSMRE	I/O	General Port C [5]
nSMCE	I/O	General Port C [4]
SMCLE	I/O	General Port C [3]
SMALE	I/O	General Port C [2]
nSMRB	I/O	General Port C [1]
nSMCD	I/O	General Port C [0]
LD[7:0]	I/O	General Port D [24:17]
LCDEN	I/O	General Port D [16]
LFP	I/O	General Port D [15]
LCP	I/O	General Port D [14]
LBLEN	I/O	General Port D [13]
LAC	I/O	General Port D [12]
LLP	I/O	General Port D [11]
SCKE[1]	I/O	General Port D [10]
SCKE[0]	I/O	General Port D [9]
nSCS[1]	I/O	General Port D [8]
nSCS[0]	I/O	General Port D [7]
nRAS	I/O	General Port D [6]
nCAS	I/O	General Port D [5]
nSWE	1/0	General Port D [4]
DQMU	1/0	General Port D [3]
		· · · · · · · · · · · · · · · · · · ·

DQML	I/O	General Port D [2]
nRCS[3]	I/O	General Port D [1]
nRCS[2]	I/O	General Port D [0]
PWM[1:0]	I/O	General Port E [15:14]
TIMER[3:0]	I/O	General Port E [13:10]
SDA	I/O	General Port E [9]
SCL	I/O	General Port E [8]
SPICLK[1]	I/O	General Port E [7]
nSSICS[1]	I/O	General Port E [6]
SSITx[1]	I/O	General Port E [5]
SSIRx[1]	I/O	General Port E [4]
SSICLK[0]	I/O	General Port E [3]
nSSICS[0]	I/O	General Port E [2]
SSITx[0]	I/O	General Port E [1]
SSIRx[0]	I/O	General Port E [0]

Refer to Figure 2-1. 208 Pin diagram.

9.14.2 Registers

Address	Name	Width	Default	Description
0x8006.2000	ADATA	12	0x000	Port A Data Register
0x8006.2004	ADIR	12	0xFFF	Port A Data Direction Register
0x8006.2008	AIE	12	0x000	Port A Interrupt Enable Register
0x8006.200C	ASTAT	12	0x000	Port A Interrupt Status Register
0x8006.2010	AEDGE	12	0x000	Port A Edge Interrupt Register
0x8006.2014	ACLR	12	0x000	Port A Interrupt Clear Register
0x8006.2018	APOL	12	0x000	Port A Interrupt Polarity Register
0x8006.201C	AEN	12	0x000	Port A Enable Register
0x8006.2020	BDATA	28	0x00000000	Port B Data Register
0x8006.2024	BDIR	28	0x1FFFFFFF	Port B Data Direction Register
0x8006.2028	BIE	28	0x00000000	Port B Interrupt Enable Register
0x8006.202C	BSTAT	28	0x00000000	Port B Interrupt Status Register
0x8006.2030	BEDGE	28	0x00000000	Port B Edge Interrupt Register
0x8006.2034	BCLR	28	0x00000000	Port B Interrupt Clear Register
0x8006.2038	BPOL	28	0x00000000	Port B Interrupt Polarity Register
0x8006.203C	BEN	28	0x00000000	Port B Enable Register
0x8006.2040	CDATA	16	0x0000	Port C Data Register
0x8006.2044	CADIR	16	0xFFFF	Port C Data Direction Register
0x8006.2048	CIE	16	0x0000	Port C Interrupt Enable Register
0x8006.204C	CSTAT	16	0x0000	Port C Interrupt Status Register
0x8006.2050	CEDGE	16	0x0000	Port C Edge Interrupt Register
0x8006.2054	CCLR	16	0x0000	Port C Interrupt Clear Register
0x8006.2058	CPOL	16	0x0000	Port C Interrupt Polarity Register
0x8006.205C	CEN	16	0x0000	Port C Enable Register
0x8006.2060	DDATA	25	0x0000000	Port D Data Register
0x8006.2064	DDIR	25	0x1FFFFFF	Port D Data Direction Register
0x8006.2068	DIE	25	0x0000000	Port D Interrupt Enable Register
0x8006.206C	DSTAT	25	0x0000000	Port D Interrupt Status Register
0x8006.2070	DEDGE	25	0x0000000	Port D Edge Interrupt Register
0x8006.2074	DCLR	25	0x0000000	Port D Interrupt Clear Register
0x8006.2078	DPOL	25	0x0000000	Port D Interrupt Polarity Register
0x8006.207C	DEN	25	0x0000000	Port D Enable Register
0x8006.2080	EDATA	16	0x00000	Port E Data Register
0x8006.2084	EDIR	16	0x1FFFF	Port E Data Direction Register
0x8006.2088	EIE	16	0x00000	Port E Interrupt Enable Register
0x8006.208C	ESTAT	16	0x00000	Port E Interrupt Status Register
0x8006.2090	EEDGE	16	0x00000	Port E Edge Interrupt Register
0x8006.2094	ECLR	16	0x00000	Port E Interrupt Clear Register
0x8006.2098	EPOL	16	0x00000	Port E Interrupt Polarity Register
0x8006.209C	EEN	16	0x00000	Port E Enable Register
0x8006.20A4	ADEBE	12	0x000	Port A De-bounce Enable Register
0x8006.20A4	BDEBE	1	0x0	Port B De-bounce Enable Register

9.14.2.1 Port A Data Register (ADATA)

0x8006.2000

11		10					0
DATA,	DIR, INTER	N, STAT, EDGE,	CLR, POL, ENABLE [7:0]			
Bits	Туре	Function					
12	R/W	zeros (port port A not th as input, thi When DIR[r 0 = Drives p 1 = Drives p When DIR[r 0 = The rea	en to this register will b pin is configured as out le value written to this i	uult) 1, 0'. (default)	ddress of this regis by a system reset.	ter reflect	the external state of

9.14.2.2 Port A Direction Register (ADIR)

11		10		1	0
DIR [7	:0]				
Bits	Туре	Function			
12	R/W	Port A direction Bits set in this register will select the corresponding pin of port A to system reset. 0 = Port A[n] is configured as an output. 1 = Port A[n] is configured as an input. (default)	configured as an	n input. All bits a	ire set by a

9.14.2.3 Port A Interrupt Enable Register (AIE)

0x8006.2008

6.2008							
11		10			1	0	
INTEN	[11:0]						
Bits	Туре	Function					
12	R/W	Bits set in t cleared by	a system reset. e interrupt. (default	ns of port A to become	an external interru	pt source. All bits	are

9.14.2.4 Port A Interrupt Status Register (ASTAT)

0x8006.200C

06.200C 11 STAT	[11:0]	10					1		0
Bits	Туре	Functi	on						
12	R	All PIO and int interrup falling e control Values are cle 0 = Inte	errupt signals ot sources onl edge signals. led separately in this read-o ared by a syst	be used as interru to interrupt contrr y. But GPIO block Then interprets an /. nly register repres tem reset. ed or no interrupt	oller. The interru k can receive no nd sends interru sents that the in	pt controller unit t only active HIG pt request to the terrupt requests	ngs. Each port ha: of HMS30C7210 6H or active LOW I interrupt controlle are pending on co	receives a level, but a er. All bits o	active HIGH level also rising or can be

9.14.2.5 Port A Edge Interrupt Register (AEDGE)

0x8006.2010

11			1	0
EDGE	[11:0]			
Bits	Туре	Function		
12	R/W	Port A interrupts are edge triggered All pins of port A can be an external interrupt source. edge or a level. Bits set in this register makes the co source. All bits are cleared by a system reset. 0 = External interrupt is triggered by level. (default) 1 = External interrupt is triggered by edge.		

9.14.2.6 Port A Interrupt Clear Register (ACLR)

0x8006.2014

0.2014							
11		10				1	0
CLR [11:0]						
Dite	Turne	Function					
Bits	Туре	Function					
12	W	If a edge t the corres only. 0 = No act	ponding bit position (used, the status registe of this register. All bits a t) rupt request and interru	are automatically cleare	ed after written	, ,

9.14.2.7 Port A Interrupt Polarity Register (APOL)

0x800	6.2018										
	11		10							1	0
	POL [1	1:0]									
	Bits	Туре		Function							
	12	R/W		If level trigg pins of port correspond When intern 0 = Externa When intern 0 = Externa 0 = Externa	A is low. If edge ling pins of port rupt is level sen al interrupt is trig al interrupt is trig rupt is edge trig al interrupt is trig	are used, bits so a triggered interr A make an fallin sitive (EDGE[n] ggered by a high ggered by a low ggered (EDGE[n] ggered by a risin ggered by a fallir	rupts are use ng edge. All b in AEDGE ro n level. (defar level.] in AEDGE r ng edge. (def	ed, bits set in thi bits are cleared l egister is 0), ult) register is 1),	is register a	ctivate the	, ,

9.14.2.8 Port A Enable Register (AEN)

0x8006.201C

.201C		10 1 0
	LE [11:0]	
Bits	Туре	Function
11	R/W	Port A[11] Enable
		Setting this bit makes the pin KSCANO[5] to be used as general digital I/O pin.
		0 = Port A[11] is used as KSCANO[5]. (default)
		1 = Port A[11] is used as general I/O pin.
10	R/W	Port A[10] Enable
		0 = Port A[10] is used as KSCANO[4]. (default)
		1 = Port A[10] is used as general I/O pin.
9	R/W	Port A[9] Enable
		0 = Port A[9] is used as KSCANO[3]. (default)
		1 = Port A[9] is used as general I/O pin.
8	R/W	Port A[8] Enable
		0 = Port A[8] is used as KSCANO[2]. (default)
		1 = Port A[8] is used as general I/O pin.
7	R/W	Port A[7] Enable
		0 = Port A[7] is used as KSCANO[1]. (default)
		1 = Port A[7] is used as general I/O pin.
6	R/W	Port A[6] Enable
		0 = Port A[6] is used as KSCANO[0]. (default)
		1 = Port A[6] is used as general I/O pin.
5	R/W	Port A[5] Enable
		0 = Port A[5] is used as KSCANI[5]. (default)
		1 = Port A[5] is used as general I/O pin.
4	R/W	Port A[4] Enable
		0 = Port A[4] is used as KSCANI[4]. (default)
		1 = Port A[4] is used as general I/O pin.
3	R/W	Port A[3] Enable
		0 = Port A[3] is used as KSCANI[3]. (default)
		1 = Port A[3] is used as general I/O pin.
2	R/W	Port A[2] Enable
		0 = Port A[2] is used as KSCANI[2]. (default)
		1 = Port A[2] is used as general I/O pin.
1	R/W	Port A[1] Enable
		0 = Port A[1] is used as KSCANI[1]. (default)
		1 = Port A[1] is used as general I/O pin.
0	R/W	Port A[0] Enable
		0 = Port A[0] is used as KSCANI[0]. (default)
		1 = Port A[0] is used as general I/O pin.

9.14.2.9 Port B Data Register (BDATA)

0x8006.2020		
27 26	1	0
DATA, DIR, INTEN, STAT, EDGE, CLR, POL, ENABLE [27:0]		
9.14.2.10 Port B Direction Register (BDIR)		
0x8006.2024		
27 26	1	0
DIR [27:0]		
9.14.2.11 Port B Interrupt Enable Register (BIE)		
0x8006.2028	_	
27 26	1	0
INTEN [27:0]		
9.14.2.12 Port B Interrupt Status Register (BSTAT) 0x8006.202C		
27 26	1	0
STAT [27:0]		
9.14.2.13 Port B Edge Interrupt Register (BEDGE) 0x8006.2030 27 26 EDGE [27:0]	1	0
9.14.2.14 Port B Interrupt Clear Register (BCLR)		
0x8006.2034		
27 26	1	0
CLR [27:0] 9.14.2.15 Port B Interrupt Polarity Register (BPOL)		
0x8006.2038 27 26	1	0
POL [27:0]		U
[=]		
9.14.2.16 Port B Enable Register (BEN)		
0x8006.203C	1	0
27 26 ENABLE [27:0]	1	0

Bits	Туре	Function
27	R/W	Port B[27] Enable
		Setting this bit makes the pin UART5Tx to be used as general digital I/O pin.
		0 = Port B[27] is used as UART5Tx. (default)
		1 = Port B[27] is used as general I/O pin.
26	R/W	Port B[26] Enable
		0 = Port B[26] is used as UART5Rx. (default)
		1 = Port B[26] is used as general I/O pin.
25	R/W	Port B[25] Enable
		0 = Port B[25] is used as nUDCD. (default)
		1 = Port B[25] is used as general I/O pin.
24	R/W	Port B[24] Enable
		0 = Port B[24] is used as nUDSR. (default)
		1 = Port B[24] is used as general I/O pin.
23	R/W	Port B[23] Enable
		0 = Port B[23] is used as nURTS. (default)
		1 = Port B[23] is used as general I/O pin.
22	R/W	Port B[22] Enable
		0 = Port B[22] is used as nUCTS. (default)
		1 = Port B[22] is used as general I/O pin.
21	R/W	Port B[21] Enable
21	10,11	0 = Port B[21] is used as nUDTR. (default)
		1 = Port B[21] is used as general I/O pin.
20	R/W	Port B[20] Enable
20	1.0.00	0 = Port B[20] is used as nURING. (default)
		1 = Port B[20] is used as general I/O pin.
19	R/W	Port B[19] Enable
19	D/W	0 = Port B[19] is used as TouchYN. (default)
18	R/W	1 = Port B[19] is used as general I/O pin.
10	r////	Port B[18] Enable 0 = Port B[18] is used as TouchXN. (default)
47		1 = Port B[18] is used as general I/O pin.
17	R/W	Port B[17] Enable
		0 = Port B[17] is used as TouchYP. (default)
40		1 = Port B[17] is used as general I/O pin.
16	R/W	Port B[16] Enable
		0 = Port B[16] is used as TouchXP. (default)
45	D 44/	1 = Port B[16] is used as general I/O pin.
15	R/W	Port B[15] Enable
		0 = Port B[15] is used as HotSync input to PMU unit. (default)
	DAM	1 = Port B[15] is used as general I/O pin.
14	R/W	Port B[14] Enable
		0 = Port B[14] is used as ToDeepSleep input to PMU unit. (default)
		1 = Port B[14] is used as general I/O pin
13	R/W	Port B[13] Enable
		0 = Port B[13] is used as IrDATx. (default)
		1 = Port B[13] is used as general I/O pin.
12	R/W	Port B[12] Enable
		0 = Port B[12] is used as IrDARx. (default)
		1 = Port B[12] is used as general I/O pin.
11	R/W	Port B[11] Enable
		0 = Port B[11 is used as UART3Tx. (default)
		1 = Port B[11] is used as general I/O pin.
10	R/W	Port B[10] Enable
		0 = Port B[10] is used as UART3Rx. (default)
		1 = Port B[10] is used as general I/O pin.
9	R/W	Port B[9] Enable
		0 = Port B[9] is used as UART2Tx. (default)
		1 = Port B[9] is used as general I/O pin.
8	R/W	Port B[8] Enable
		0 = Port B[8] is used as UART2Rx. (default)
		1 = Port B[8] is used as general I/O pin.

7	R/W	Port B[7] Enable
		0 = Port B[7] is used as SCPRES[1]. (default)
		1 = Port B[7] is used as general I/O pin.
6	R/W	Port B[6] Enable
		0 = Port B[6] is used as SCCLK[1]. (default)
		1 = Port B[6] is used as general I/O pin.
5	R/W	Port B[5] Enable
		0 = Port B[5] is used as SCIO[1]. (default)
		1 = Port B[5] is used as general I/O pin.
4	R/W	Port B[4] Enable
		0 = Port B[4] is used as SCRST[1]. (default)
		1 = Port B[4] is used as general I/O pin.
3	R/W	Port B[3] Enable
		0 = Port B[3] is used as SCPRES[0]. (default)
		1 = Port B[3] is used as general I/O pin.
2	R/W	Port B[2] Enable
		0 = Port B[2] is used as SCCLK[0]. (default)
		1 = Port B[2] is used as general I/O pin.
1	R/W	Port B[1] Enable
		0 = Port B[1] is used as SCIO[0]. (default)
		1 = Port B[1] is used as general I/O pin.
0	R/W	Port B[0] Enable
		0 = Port B[0] is used as SCRST[0]. (default)
		1 = Port B[0] is used as general I/O pin.

9.14.2.17 Port C Data Register (CDATA)

0x8006.2040							
	15	14		1	0		
	DATA, DIR, INT	EN, STAT, EDGE	, CLR, POL, ENABLE[15:0]				

9.14.2.18 Port C Direction Register (CDIR)

0x8006.2044

15	14	 1	0
DIR [15:0]			

9.14.2.19 Port C Interrupt Enable Register (CIE)

0x8006.2048						
	15	14		1	0	
	INTEN [15:0]					

9.14.2.20 Port C Interrupt Status Register (CSTAT)

0x8006.204C						
	15	14		1	0	
	STAT [15:0]					

9.14.2.21 Port C Edge Interrupt Register (CEDGE)

0x8006.2050						
	15	14		1	0	
	EDGE [15:0]					

9.14.2.22 Port C Interrupt Clear Register (CCLR)

0x8006.2054							
	15	14		1	0		
	CLR [15:0]						

9.14.2.23 Port C Interrupt Polarity Register (CPOL)

0x8006.2058						
	15	14		1	0	
	POL [15:0]					

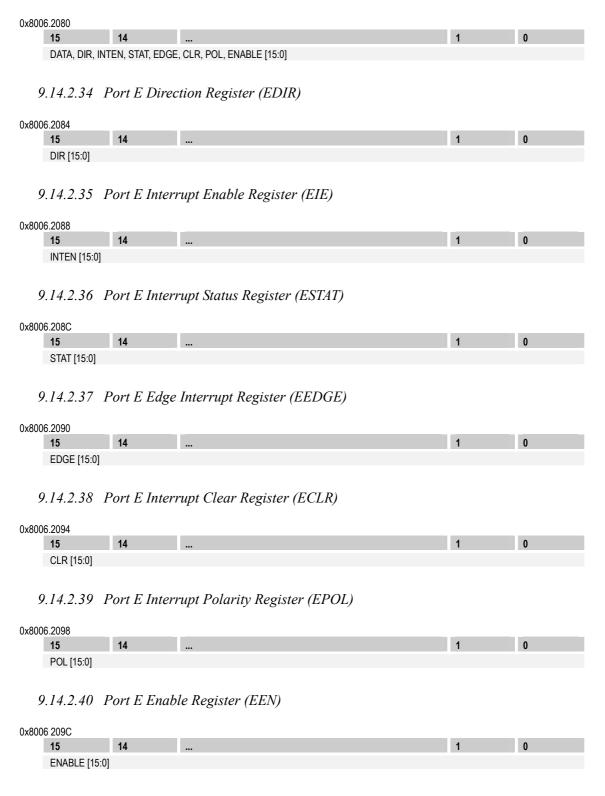
9.14.2.24 Port C Enable Register (CEN)

0x800	6.205C			
	15	14	 1	0
	ENABLE [15:0]			

Bits	Туре	Function
15	R/W	Port C[15] Enable
		Setting this bit makes the pin SMD[7] to be used as general digital I/O pin.
		0 = Port C[15] is used as SMD[7]. (default)
		1 = Port C[15] is used as general I/O pin.
14	R/W	Port C[14] Enable
		0 = Port C[14] is used as SMD[6]. (default)
		1 = Port C[14] is used as general I/O pin
13	R/W	Port C[13] Enable
		0 = Port C[13] is used as SMD[5]. (default)
		1 = Port C[13] is used as general I/O pin.
12	R/W	Port C[12] Enable
		0 = Port C[12] is used as SMD[4]. (default)
		1 = Port C[12] is used as general I/O pin.
11	R/W	Port C[11] Enable
		0 = Port C[11 is used as SMD[3]. (default)
		1 = Port C[11] is used as general I/O pin.
10	R/W	Port C[10] Enable
10	1011	0 = Port C[10] is used as SMD[2]. (default)
		1 = Port C[10] is used as general I/O pin.
9	R/W	Port C[9] Enable
5	1.1/11	0 = Port C[9] is used as SMD[1]. (default)
		1 = Port C[9] is used as general I/O pin.
8	R/W	Port C[8] Enable
0	1.7.4.4	0 = Port C[8] is used as SMD[0]. (default)
		1 = Port C[8] is used as general I/O pin.
7	R/W	Port C[7] Enable
1	1.1/1/1	0 = Port C[7] is used as nSMWP. (default)
		1 = Port C[7] is used as general I/O pin.
6	R/W	Port C[6] Enable
0	FX/ ¥¥	0 = Port C[6] is used as nSMWE. (default)
		1 = Port C[6] is used as general I/O pin.
F	R/W	
5	R/W	Port C[5] Enable
		0 = Port C[5] is used as nSMRE. (default)
4		1 = Port C[5] is used as general I/O pin.
4	R/W	Port C[4] Enable
		0 = Port C[4] is used as nSMCE. (default)
2	D 44/	1 = Port C[4] is used as general I/O pin.
3	R/W	Port C[3] Enable
		0 = Port C[3] is used as SMCLE. (default)
•	DAM	1 = Port C[3] is used as general I/O pin.
2	R/W	Port C[2] Enable
		0 = Port C[2] is used as SMALE. (default)
		1 = Port C[2] is used as general I/O pin.
1	R/W	Port C[1] Enable
		0 = Port C[1] is used as nSMRB. (default)
		1 = Port C[1] is used as general I/O pin.
0	R/W	Port C[0] Enable
		0 = Port C[0] is used as nSMCD. (default)
		1 = Port C[0] is used as general I/O pin.

9.14.2.25 Port D Data Register (DDATA)

0x8006.2060		
24 23	1	0
DATA, DIR, MASK, STAT, EDGE, CLR, POL, ENABLE[24:0]		
9.14.2.26 Port D Direction Register (DDIR)		
0x8006.2064 24 23	1	0
DIR [24:0]		U
9.14.2.27 Port D Interrupt Enable Register (DIE)		
9.14.2.27 TOND Interrupt Endote Register (DIE)		
0x8006.2068		
24 23	1	0
INTEN [24:0]		
9.14.2.28 Port D Interrupt Status Register (DSTAT)		
0.0000 0000		
0x8006.206C 24 23	1	0
STAT [24:0]		·
9.14.2.29 Port D Edge Interrupt Register (DEDGE)		
(DID OD)		
0x8006.2070		
24 23	1	0
EDGE [24:0]		
9.14.2.30 Port D Interrupt Clear Register (DCLR)		
0x8006.2074		
24 23	1	0
CLR [24:0]		
9.14.2.31 Port D Interrupt Polarity Register (DPOL)		
0x8006.2078		
24 23	1	0
POL [24:0]		
0.14222 Develop Excellence (DEM)		
9.14.2.32 Port D Enable Register (DEN)		
0x8006.207C		
24 23	1	0
ENABLE [24:0]		


Bits	Туре	Function
24	R/W	Port D[24] Enable
		Setting this bit makes the pin LD[7] to be used as general digital I/O pin.
		0 = Port D[24] is used as LD[7]. (default)
		1 = Port D[24] is used as general I/O pin.
23	R/W	Port D[23] Enable
		0 = Port D[23] is used as LD[6]. (default)
		1 = Port D[23] is used as general I/O pin.
22	R/W	Port D[22] Enable
		0 = Port D[22] is used as LD[5]. (default)
		1 = Port D[22] is used as general I/O pin.
21	R/W	Port D[21] Enable
		0 = Port D[21] is used as LD[4]. (default)
		1 = Port D[21] is used as general I/O pin.
20	R/W	Port D[20] Enable
		0 = Port D[20] is used as LD[3]. (default)
		1 = Port D[20] is used as general I/O pin.
19	R/W	Port D[19] Enable
		0 = Port D[19] is used as LD[2]. (default)
		1 = Port D[19] is used as general I/O pin.
18	R/W	Port D[18] Enable
		0 = Port D[18] is used as LD[1]. (default)
		1 = Port D[18] is used as general I/O pin.
17	R/W	Port D[17] Enable
		0 = Port D[17] is used as LD[0]. (default)
		1 = Port D[17] is used as general I/O pin.
16	R/W	Port D[16] Enable
		0 = Port D[16] is used as LCDEN. (default)
		1 = Port D[16] is used as general I/O pin.
15	R/W	Port D[15] Enable
		0 = Port D[15] is used as LFP. (default)
		1 = Port D[15] is used as general I/O pin.
14	R/W	Port D[14] Enable
•••	1011	0 = Port D[14] is used as LCP. (default)
		1 = Port D[14] is used as general I/O pin
13	R/W	Port D[13] Enable
		0 = Port D[13] is used as LBLEN. (default)
		1 = Port D[13] is used as general I/O pin.
12	R/W	Port D[12] Enable
		0 = Port D[12] is used as LAC. (default)
		1 = Port D[12] is used as general I/O pin.
11	R/W	Port D[11] Enable
		0 = Port D[11 is used as LLP. (default)
		1 = Port D[11] is used as general I/O pin.
10	R/W	Port D[10] Enable
		0 = Port D[10] is used as SCKE[1]. (default)
		1 = Port D[10] is used as general I/O pin.
9	R/W	Port D[9] Enable
0	10,11	0 = Port D[9] is used as SCKE[0]. (default)
		1 = Port D[9] is used as general I/O pin.
8	R/W	Port D[8] Enable
0	1	0 = Port D[8] is used as nSCS[1]. (default)
		1 = Port D[8] is used as general I/O pin.
7	R/W	Port D[7] Enable
'	1.1.1.1	0 = Port D[7] is used as nSCS[0]. (default)
		1 = Port D[7] is used as inscision. (default)
6	R/W	Port D[6] Enable
6	FN/ W	
		0 = Port D[6] is used as nRAS. (default)
E		1 = Port D[6] is used as general I/O pin.
5	R/W	Port D[5] Enable
		0 = Port D[5] is used as nCAS. (default)
		1 = Port D[5] is used as general I/O pin.

0 = Port D[4] is used as SWE. ((dofault)
1 = Port D[4] is used as genera	, ,
3 R/W Port D[3] Enable	ii i/O piii.
0 = Port D[3] is used as DQMU	. (default)
1 = Port D[3] is used as genera	· /
2 R/W Port D[2] Enable	
0 = Port D[2] is used as DQML.	. (default)
1 = Port D[2] is used as genera	l I/O pin.
1 R/W Port D[1] Enable	
0 = Port D[1] is used as nRCS[3]. (default)
1 = Port D[1] is used as genera	l I/O pin.
0 R/W Port D[0] Enable	
0 = Port D[0] is used as nRCS[2]. (default)
1 = Port D[0] is used as genera	l I/O pin.

9.14.2.33 Port E Data Register (EDATA)

Bits	Туре	Function
15	R/W	Port E[15] Enable
		Setting this bit makes the pin PWM[1] to be used as general digital I/O pin.
		0 = Port E[15] is used as PWM[1]. (default)
		1 = Port E[15] is used as general I/O pin.
14	R/W	Port E[14] Enable
		0 = Port E[14] is used as PWM[0]. (default)
		1 = Port E[14] is used as general I/O pin
13	R/W	Port E[13] Enable
		0 = Port E[13] is used as TIEMR[3]. (default)
		1 = Port E[13] is used as general I/O pin.
12	R/W	Port E[12] Enable
		0 = Port E[12] is used as TIMER[2]. (default)
		1 = Port E[12] is used as general I/O pin.
11	R/W	Port E[11] Enable
		0 = Port E[11 is used as TIMER[1]. (default)
		1 = Port E[11] is used as general I/O pin.
10	R/W	Port E[10] Enable
		0 = Port E[10] is used as TIMER[0]. (default)
		1 = Port E[10] is used as general I/O pin.
9	R/W	Port E[9] Enable
		0 = Port E[9] is used as SDA. (default)
		1 = Port E[9] is used as general I/O pin.
8	R/W	Port E[8] Enable
		0 = Port E[8] is used as SCL. (default)
7	DAA	1 = Port E[8] is used as general I/O pin.
7	R/W	Port E[7] Enable
		0 = Port E[7] is used as SPICLK[1]. (default)
6	R/W	1 = Port E[7] is used as general I/O pin. Port E[6] Enable
0	D/ W	0 = Port E[6] is used as nSPICS[1]. (default)
		1 = Port E[6] is used as general I/O pin.
5	R/W	Port E[5] Enable
5	11/11	0 = Port E[5] is used as SPITx[1]. (default)
		1 = Port E[5] is used as general I/O pin.
4	R/W	Port E[4] Enable
т	1.4.4.4	0 = Port E[4] is used as SPIRx[1]. (default)
		1 = Port E[4] is used as general I/O pin.
3	R/W	Port E[3] Enable
Ū.		0 = Port E[3] is used as SPICLK[0]. (default)
		1 = Port E[3] is used as general I/O pin.
2	R/W	Port E[2] Enable
		0 = Port E[2] is used as nSPICS[0]. (default)
		1 = Port E[2] is used as general I/O pin.
1	R/W	Port E[1] Enable
		0 = Port E[1] is used as SPITx[0]. (default)
		1 = Port E[1] is used as general I/O pin.
0	R/W	Port E[0] Enable
		0 = Port E[0] is used as SPIRx[0]. (default)
		1 = Port E[0] is used as general I/O pin.

9.14.2.41 Port A De-Bounce Enable Register (ADEBE)

0x8006 20A4

20A4 11		10					1	0
	0[11.0]	10					•	U
ADDIN	C[11:0]							
Bits	Туре	Functi	on					
11	R/W		11] input de-b					
							chanical jit	ter. If this bit is cleared
					s of pin KSCANO[5] i	mmediately.		
				s used directly. (defa				
				s used after de-boun	cing.			
10	R/W		10] input de-b					
				s used directly. (defa				
				s used after de-boun	cing.			
9	R/W		9] input de-bo					
				used directly. (defau				
~				used after de-bound	ing.			
8	R/W		8] input de-bo					
				used directly. (defau				
-	D 444			used after de-bound	ing			
7	R/W		7] input de-bo					
				used directly. (defau				
~				used after de-bound	ing			
6	R/W		6] input de-bo		11)			
				used directly. (defau				
~				used after de-bound	ing.			
5	R/W		5] input de-bo	unce enable used directly. (defau	14)			
4	R/W			used after de-bound	ing.			
4	R/W		4] input de-bo		14)			
				used directly. (defau used after de-bound				
3	R/W		3] input de-bo		ing.			
5	D/ W			used directly. (defau	1+)			
				used after de-bound				
2	R/W		2] input de-bo		ing.			
2	1.0,00			used directly. (defau	I +)			
				used after de-bound				
1	R/W		1] input de-bo		ing.			
	1.1/1.1			used directly. (defau	lt)			
				used after de-bound				
0	R/W		0] input de-bo					
•	1.7.4.4			used directly. (defau	lt)			
				used after de-bound				

9.14.2.42 Port B De-Bounce Enable Register (BDEBE)

0x8006.20A8

			0
			BDBNC14
Bits	Туре	Function	
0	R/W	Port B[14] input de-bounce enable The input signal of port B[14] can be de-bounced by setting this bit to remove mechanical jitter. If the cleared, input signal of port B[14] reflects the status of pin GPIOB14 immediately. 0 = Port B[14] input is used directly. (default) 1 = Port B[14] input is used after de-bouncing.	his bit is

9.14.3 Operations

Throughout the operation description of each port, port A is used as an example port. All is same to other ports.

9.14.3.1 Configuring the pin

The DIR[n] bit in the ADIR register selects the direction of this pin. If DIR[n] is written logic one, port A[n] is configured as an input pin. If DIR[n] is written logic zero, port A[n] is configured as an output pin. Note that port A[n] can be used as an input or output pin only when ENABLE[n] bit in the AEN register is written logic one. Otherwise, port A[n] is used as an primary function pin.

9.14.3.2 Writing the pin value

Values written to ADATA register will be output on port A pins if the corresponding bits of port A direction register are zeros.

The pin of port A[n] is driven high when the DATA[n] bit in ADATA register is written logic one. And the pin of port A[n] is driven low when the DATA[n] is written logic zero.

9.14.3.3 Reading the pin value

Independent of the setting of data direction bit DIR[n], the port pin can be read through the ADATA register bit. In that case, ENABLE[n] bit in the AEN register must be written logic one to read the pin value. If ENABLE[n] bit is written logic zero, the pin value will be read as zero.

9.14.3.4 Alternate port functions

All port pins have alternate functions in addition to being general digital I/Os. The alternate function can be selected by clearing ENABLE[n] bit in each port enable register. If ENABLE[n] bit in the AEN register is written logic one, port A[n] is configured as an general digital I/O and if ENABLE[n] is written zero, port A[n] is used by alternate function block. For example if AEN[11:0] is written value 0xF00, port A[7:0] are used for keyboard function, and port A[11:8] are used as general I/Os.

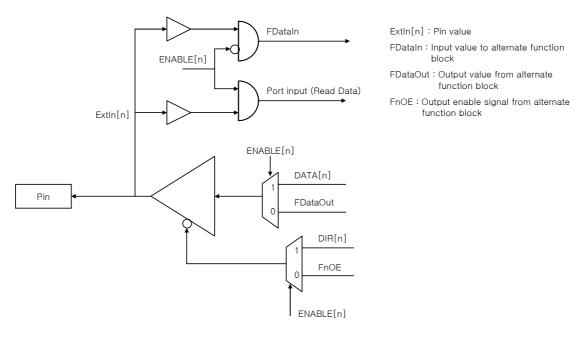


Figure 9-68. Alternate port functions

9.14.3.5 External interrupt request

GPIO has 7 interrupt sources. Each port can be configured as 1 interrupt source except port B. That is, if any pin of port A makes an interrupt condition, an interrupt is requested form port A. In order to use a port A as an interrupt source, specify EDGE[n] bits in AEDGE register and POL[n] bits in APOL register according to interrupt type. And then set the INTEN[n] bits in AIE register to enable interrupt request. The usage of port C, D and E is same as port A.

Unlike other ports, port B has 3 interrupt sources.

- The first interrupt source comes from port B[27:16] or port B[13:0], and these port pins are used as normal external interrupt sources like other port pins.
 The second interrupt source is port B[15] (GPIOB[15]). GPIOB[15] is used to
- The second interrupt source is port B[15] (GPIOB[15]). GPIOB[15] is used to detect HotSync. When PMU is in DEEPSLEEP or SLEEP modes, the interrupt of port B[15] makes the PMU wake-up.
- And the third interrupt source is port B[14] (GPIOB[14]). GPIOB[14] is required to make the operating mode of PMU unit go to DEEPSLEEP mode. Changing the operation mode of PMU unit is software's responsibility. That is, when GPIOB[14] triggers an interrupt, the interrupt handler forces the PMU to enter DEEPSLEEP mode.

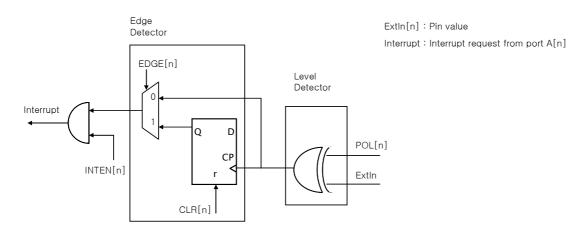


Figure 9-69. Interrupt request

There are 4 cases to trigger an interrupt, and the sequence to trigger an interrupt is shown below. Port A is used to be an interrupt source. Note that interrupt clear methods are different according to the triggering condition.

A high level of port pin

- Decide port pins to be interrupt sources.
- Write zeros to the selected bits in APOL register.
- Write zeros to the selected bits in AEDGE register.
- Enable interrupts by writing ones to the selected bits in AIE register.
- If interrupt is requested, the external port pin must be changed to low level to clear interrupt request.

A low level of port pin

- Decide port pins to be interrupt sources.
- Write ones to the selected bits in APOL register.
- Write zeros to the selected bits in AEDGE register.
- Enable interrupts by writing ones to the selected bits in AIE register.
- If interrupt is requested, the external port pin must be changed to high level to clear interrupt request.

A rising edge of port pin

- Decide port pins to be interrupt sources.
- Write zeros to the selected bits in APOL register.
- Write ones to the selected bits in AEDGE register.
- Enable interrupts by writing ones to the selected bits in AIE register.
- If interrupt is requested, the handler writes one to ACLR register (corresponding bit position).

A falling edge of port pin

- Decide port pins to be interrupt sources.
- Write ones to the selected bits in APOL register.
- Write ones to the selected bits in AEDGE register.
- Enable interrupts by writing ones to the selected bits in AIE register.
- If interrupt is requested, the handler writes one to ACLR register (corresponding bit position).

Interrupt Name	Configurable Bits
GPIOAINT	Port A[11:0]
GPIOBINT	Port B[27:0]
GPIOCINT	Port C[15:0]
GPIODINT	Port D[24:0]
GPIOEINT	Port E[15:0]
GPIOB14INT	Port B[14], Deep Sleep interrupt
GPIOB15INT	Port B[15], Hotsync interrupt

Table 9-22. Interrupt sources of I/Os (to interrupt controller unit)

9.14.3.6 De-bouncing port A and port B[14]

All pins of port A and GPIOB[14] can be de-bounced before being used as input signals. If ADBNC[n] bit in ADEBE register is written logic one, the input signal of port A[n] is de-bounced by a slow clock, and the de-bounced signal is used in alternate function block or interrupt source of port A[n]. Also, the read value of port A[n] is de-bounced signal.

In port B, only GPIOB[14] can be de-bounced.

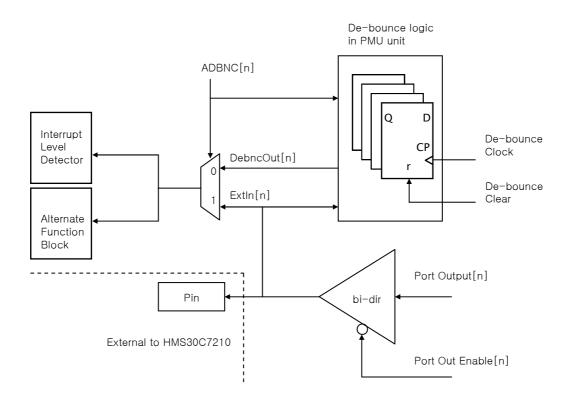


Figure 9-70. De-bouncing of port A

9.14.4 GPIO Rise and Fall Time

This sections describes the rise and fall time of each pad pin. The pad library cells used in HMS30C7210 are symbolized as PC3B01, PC3B03 and PT3B03. PC3B01 and PC3B03 cells are three state CMOS input/output pads with AC drive capability of 1x and 3x. PT3B03 cells are three state TTL input/output pads with DC drive capability of 8mA.

The following 2 figures depicts pad organization and waveform respectively. And these figures are used to explain timing symbols.

The symbol tCMOS or tTTL mean the propagation delay from I to PAD of CMOS or TTL pad and tOEN means the propagation delay from OEN to PAD of each pad cell.

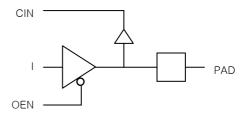


Figure 9-71. Pad organization

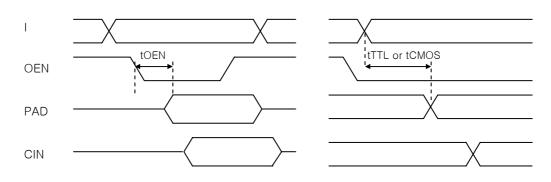


Figure 9-72. Timing diagram of bi-directional pad (CMOS or TTL)

The propagation delay listed in the following table is rounded off to three decimal places.

Port Name		50pF	100pF		150pF		
		Rise(ns)	Fall(ns)	Rise(ns)	Fall(ns)	Rise(ns)	Fall(ns)
PC3B01	tCMOS	5.60	4.94	9.80	8.29	14.01	11.64
	tOEN	5.92	4.25	10.10	7.63	14.29	11.02
PC3B03	tCMOS	3.60	3.74	5.71	5.39	7.82	7.04
	tOEN	3.84	2.53	5.93	4.21	8.02	5.90
PT3B03	tTTL	2.71	2.74	4.17	3.87	5.63	5.00
	tOEN	3.28	1.96	4.72	3.12	6.15	4.27

Table 9-23. Propagation delays (ns) for sample pad loads

10 DEBUG AND TEST INTERFACE

10.1 Overview

The HMS30C7210 has built-in features that enable debug and test in a number of different contexts. Firstly, there are circuit structures to help with software development. Secondly, the device contains boundary scan cells for circuit board test. Finally, the device contains some special test modes that enable the generation production patterns for the device itself.

10.2 Software Development Debug and Test Interface

The ARM720T processors incorporated inside HMS30C7210 contain hardware extensions for advanced debugging features. These are intended to ease user development and debugging of application software, operating systems, and the hardware itself.

Full details of the debug interfaces and their programming can be found in ARM720T Data Sheet (ARM DDI-0087). The MultiICE product enables the ARM720T macrocells to be debugged in one environment. Refer to Guide to MultiICE (ARM DUI-0048).

10.3 Test Access Port and Boundary-Scan

HMS30C7210 contains full boundary scan on its inputs and outputs to help with circuit board test. This supports both INTEST and EXTEST, allowing patterns to be applied serially to the HMS30C7202 when fixed in a board and for full circuit board connection respectively. The boundary-scan interface conforms to the IEEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan Architecture. (Please refer to this standard for an explanation of the terms used in this section and for a description of the TAP controller states.) The boundary-scan interface provides a means of testing the core of the device when it is fitted to a circuit board, and a means of driving and sampling all the external pins of the device irrespective of the core state. This latter function permits testing of both the device's electrical connections to the circuit board, and (in conjunction with other devices on the circuit board having a similar interface) testing the integrity of the circuit board connections between devices. The interface intercepts all external connections within the device, and each such "cell" is then connected together to form a serial register (the boundary scan register). The whole interface is controlled via 5 dedicated pins: TDI, TMS, TCK, nTRST and TDO. Figure 11-1: Test Access Port (TAP) Controller State Transitions shows the state transitions that occur in the TAP controller.

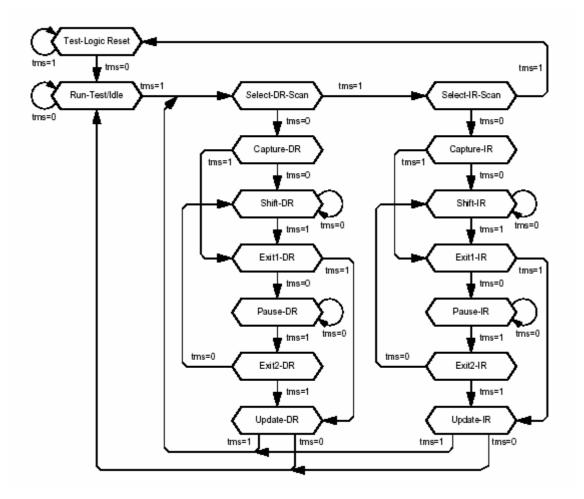


Figure 10-1. Test Access Port(TAP) Controller State Transitions

10.3.1 Reset

The boundary-scan interface includes a state-machine controller (the TAP controller). A pulldown resistor is included in the **nTRST** pad which holds the TAP controller state machine in a safe state after power up. In order to use the boundary scan interface, **nTRST** should be driven HIGH to take the TAP state machine out of reset.

The action of reset (either a pulse or a DC level) is as follows:

• System mode is selected (i.e. the boundary scan chain does NOT intercept any of the signals passing between the pads and the core).

• IDcode mode is selected. If **TCK** is pulsed, the contents of the ID register will be clocked out of **TDO**.

Note The TAP controller inside HMS30C7210 contains a scan chip register which is reset to the value b0011 thus selecting the boundary scan chain. If this register is programmed to any value other than b0011, then it must be reprogrammed with b0011 or a reset applied before boundary scan operation can be attempted.

10.3.2 Pull-up Register

The IEEE 1149.1 standard requires pullup resistors in the input pins. However, to ensure safe operation an internal pulldown is present in the **nTRST** pin and therefore will have to be driven HIGH when using this interface.

Pin Name	Internal Resistor
TCLK	Pull-up
nTRST	Pull-down
TMS	Pull-up
TDI	Pull-up

10.3.3 Instruction Register

The instruction register is 4 bits in length.

There is no parity bit. The fixed value loaded into the instruction register during the CAPTURE-IR controller state is: 0001.

10.3.4 Public Instructions

The following public instructions are supported:

Instruction	Binary Code
EXTEST	0000
SAMPLE/PRELOAD	0011
CLAMP	0101
HIGHZ	0111
CLAMPZ	1001
INTEST	1100
IDCODE	1110
BYPASS	1111

In the descriptions that follow, **TDI** and **TMS** are sampled on the rising edge of **TCK** and all output transitions on **TDO** occur as a result of the falling edge of **TC**K.

EXTEST (0000)

The BS (boundary-scan) register is placed in test mode by the EXTEST instruction. The EXTEST instruction connects the BS register between **TDI** and **TDO**. When the instruction register is loaded with the EXTEST instruction, all the boundary-scan cells are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system pins and outputs from the boundary-scan output cells to the system pins are captured by the boundary-scan cells. In the SHIFT-DR state, the previously captured test data is shifted out of the BS register via the **TDO** pin, whilst new test data is shifted in via the **TDI** pin to the BS register parallel input latch. In the UPDATE-DR state, the new test data is transferred into the BS register parallel output latch. Note that this data is applied immediately to the system logic and system pins. The first EXTEST vector should be clocked into the boundary-scan register, using the SAMPLE/PRELOAD instruction, prior to selecting EXTEST to ensure that known data is applied to the system logic.

SAMPLE/PRELOAD (0011)

The BS (boundary-scan) register is placed in normal (system) mode by the SAMPLE/PRELOAD instruction.

The SAMPLE/PRELOAD instruction connects the BS register between **TDI** and **TDO**. When the instruction register is loaded with the SAMPLE/PRELOAD instruction, all the boundary-scan cells are placed in their normal system mode of operation.

In the CAPTURE-DR state, a snapshot of the signals at the boundary-scan cells is taken on the rising edge of **TCK**. Normal system operation is unaffected. In the SHIFT-DR state, the sampled test data is shifted out of the BS register via the **TDO** pin, whilst new data is shifted in via the **TDI** pin to preload the BS register parallel input latch. In the UPDATE-DR state, the preloaded data is transferred into the BS register parallel output latch. Note that this data is not applied to the system logic or system pins while the SAMPLE/PRELOAD instruction is active. This instruction should be used to preload the boundary-scan register with known data prior to selecting the INTEST or EXTEST instructions.

CLAMP (0101)

The CLAMP instruction connects a 1 bit shift register (the BYPASS register) between **TDI** and **TDO**. When the CLAMP instruction is loaded into the instruction register, the state of all output signals is defined by the values previously loaded into the boundary-scan register. A guarding pattern should be pre-loaded into the boundary-scan register using the SAMPLE/PRELOAD instruction prior to selecting the CLAMP instruction. In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is shifted into the bypass register via **TDI** and out via **TDO** after a delay of one **TCK** cycle. Note that the first bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

HIGHZ (0111)

The HIGHZ instruction connects a 1 bit shift register (the BYPASS register) between **TDI** and **TDO**. When the HIGHZ instruction is loaded into the instruction register, all outputs are placed in an inactive drive state. In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is shifted into the bypass register via **TDI** and out via **TDO** after a delay of one **TCK** cycle. Note that the first bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

CLAMPZ (1001)

The CLAMPZ instruction connects a 1 bit shift register (the BYPASS register) between **TDI** and **TDO**. When the CLAMPZ instruction is loaded into the instruction register, all outputs are placed in an inactive drive state, but the data supplied to the disabled output drivers is derived from the boundary-scan cells. The purpose of this instruction is to ensure, during production testing, that each output driver can be disabled when its data input is either a 0 or a 1. A guarding pattern (specified for this device at the end of this section) should be pre-loaded into the boundary-scan register using the SAMPLE/PRELOAD instruction prior to selecting the CLAMPZ instruction. In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is shifted into the bypass register via **TDI** and out via **TDO** after a delay of one **TCK** cycle.

Note that the first bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

INTEST (1100)

The BS (boundary-scan) register is placed in test mode by the INTEST instruction. The INTEST instruction connects the BS register between TDI and TDO. When the instruction register is loaded with the INTEST instruction, all the boundary-scan cells are placed in their test mode of operation. In the CAPTURE-DR state, the complement of the data supplied to the core logic from input boundary-scan cells is captured, while the true value of the data that is output from the core logic to output boundary- scan cells is captured. Note that CAPTURE-DR captures the complemented value of the input cells for testability reasons. In the SHIFT-DR state, the previously captured test data is shifted out of the BS register via the **TDO** pin, whilst new test data is shifted in via the TDI pin to the BS register parallel input latch. In the UPDATE-DR state, the new test data is transferred into the BS register parallel output latch. Note that this data is applied immediately to the system logic and system pins. The first INTEST vector should be clocked into the boundary-scan register, using the SAMPLE/PRELOAD instruction, prior to selecting INTEST to ensure that known data is applied to the system logic. Single-step operation is possible using the INTEST instruction.

IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register) between **TDI** and **TD**O. The ID register is a 32-bit register that allows the manufacturer, part number and version of a component to be determined through the TAP. The IDCODE returned will be that for the ARM720T core. When the instruction register is loaded with the IDCODE instruction, all the boundary-scan cells are placed in their normal (system) mode of operation. In the CAPTURE-DR state, the device identification code (specified at the end of this section) is captured by the ID register. In the SHIFT-DR state, the previously captured device identification code is shifted out of the ID register via the **TDO** pin, whilst data is shifted in via the **TDI** pin into the ID register. In the UPDATE-DR state, the ID register is unaffected.

BYPASS (1111)

The BYPASS instruction connects a 1 bit shift register (the BYPASS register) between**TDI** and **TD**O. When the BYPASS instruction is loaded into the instruction register, all the boundary-scan cells are placed in their normal (system) mode of operation. This instruction has no effect on the system pins. In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is shifted into the bypass register via **TDI** and out via **TDO** after a delay of one **TCK** cycle. Note that the first bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

10.3.5 Test Data Register

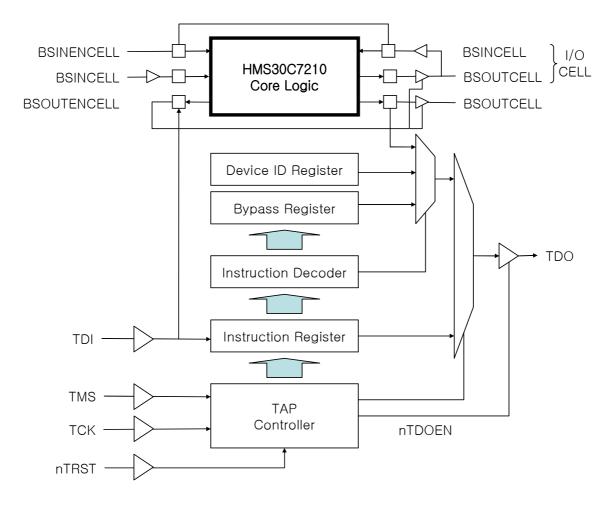


Figure 10-2. Boundary Scan Block Diagram

Bypass Register

Purpose: This is a single bit register which can be selected as the path between **TDI** and **TDO** to allow the device to be bypassed during boundary-scan testing. Length: 1 bit

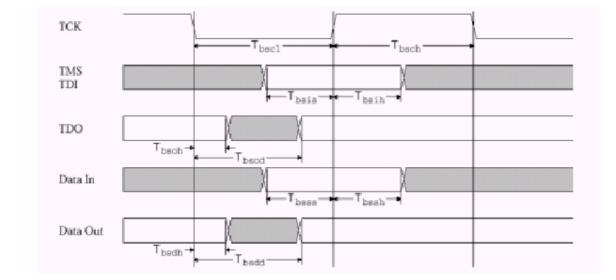
Operating Mode: When the BYPASS instruction is the current instruction in the instruction register, serial data is transferred from **TDI** to **TDO** in the SHIFT-DR state with a delay of one **TCK** cycle.

There is no parallel output from the bypass register.

A logic 0 is loaded from the parallel input of the bypass register in the CAPTURE-DR state.

Boundary Scan (BS) Register

Purpose: The BS register consists of a serially connected set of cells around the periphery of the device, at the interface between the core logic and the system input/output pads. This register can be used to isolate the core logic from the pins and then apply tests to the core logic, or conversely to isolate the pins from the core logic and then drive or monitor the system pins. Operating modes: The BS register is selected as the register to be connected between **TDI** and **TDO** only during the SAMPLE/PRELOAD, EXTEST and INTEST instructions. Values in the BS register are used, but are not changed, during the CLAMP and CLAMPZ instructions. In the normal (system) mode of operation, straight-through connections between the core logic and pins are maintained and normal system operation is unaffected. In TEST mode (i.e. when either EXTEST or INTEST is the currently selected instruction), values on the input pins and core logic outputs respectively. On the HMS30C7202 all of the boundary scan cells include an update register and thus all of the pins can be controlled in the above manner.


Additional boundary-scan cells are interposed in the scan chain in order to control the enabling of tristateable buses. The values stored in the BS register after power-up are not defined. Similarly, the values previously clocked into the BS register are not guaranteed to be maintained across a Boundary Scan reset (from forcing **nTRST** LOW or entering the Test Logic Reset state).

Single-step Operation

HMS30C7210 is a static design and there is no minimum clock speed. It can therefore be single-stepped while the INTEST instruction is selected and the PLLs are bypassed.

This can be achieved by serializing a parallel stimulus and clocking the resulting serial vectors into the boundary-scan register. When the boundary-scan register is updated, new test stimuli are applied to the core logic inputs; the effect of these stimuli can then be observed on the core logic outputs by capturing them in the boundary-scan register.

10.3.6 Boundary Scan Interface Signals

Figure 10-3. Boundary Scan General Timing

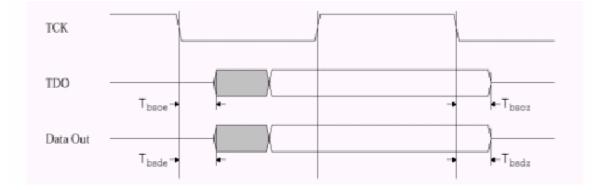


Figure 10-4. Boundary Scan Tri-state Timing

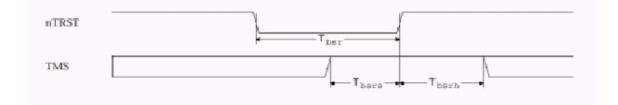


Figure 10-5. Boundary Scan Reset Timing

Symbol	Parameter	Min	Max
Tbscl	TCK low period	50	-
Tbsch	TCK high period	50	-
Tbsis	TMS, TDI setup to TCKr	0	-
Tbsih	TMS, TDI hold from TCKr	2	-
Tbsoh	TDO output hold from TCKf	3	-
Tbsod	TDO output delay from TCKf	-	20
Tbsss	Test mode Data in setup to TCKr	2	-
Tbssh	Test mode Data in hold from TCKf	5	-
Tbsdh	Test mode Data out hold from TCKf	3	-
Tbsdd	Test mode Data out delay from TCKf	-	20
Tbsoe	TDO output enable delay from TCKf	2	15
Tbsoz	Test mode Data enable delay from TCKf	2	15
Tbsde	TDO output disable delay from TCKf	2	15
Tbsdz	Test mode Data disable delay from TCKf	2	15
Tbsr	NTRST minimun pulse width	25	-
Tbsrs	TMS setup to nTRSTr	20	-
Tbsrh	TMS hold from nTRSTr	20	-

The AC parameters are based on simulation results using 0.0pf circuit signal loads. Delays should be calculated using manufacturers output derating values for the actual circuit capacitance loading.

The correspondence between boundary-scan cells and system pins, system direction controls and system output enables is shown below. The cells are listed in the order in which they are connected in the boundary-scan register, starting with the cell closest to TDI. All outputs are three-state outputs. All boundary-scan register cells at input pins can apply tests to the on-chip system logic.

EXTEST/CLAMP guard values specified in the table below should be clocked into the boundary-scan register (using the SAMPLE/PRELOAD instruction) before the EXTEST, CLAMP or CLAMPZ instructions are selected to ensure that known data is applied to the system logic during the test. The INTEST guard values shown in the table below should be clocked into the boundary-scan register (using the SAMPLE/PRELOAD instruction) before the INTEST instruction is selected to ensure that all outputs are disabled. An asterisk in the guard value column indicates that any value can be submitted (as test requires), but ones and zeros should always be placed as shown.

11 ELECTRICAL CHARACTERISTICS

11.1 Absolute Maximum Ratings

Symbol	Parameter	Typical	Units	VDD Condition
Prun	RUN Mode Power	391	mW	@ 3.3V
Pslow	SLOW Mode Power	355	mW	@ 3.3V
PIDLE	IDLE Mode Power	276	mW	@ 3.3V
PPD	Deep-Sleep Mode Power	3.3	uW	@ 3.3V
PRTC	RTC Power	36	uW	@ 3.0V

Table 11-1. Maximum Ratings

- Core / IO / Analog VDD are 3.3V
- Operating frequency is 60MHz.
- In RUN/ŠLOW Mode CPU generated image pattern (on SDRAM) and displayed to 640x480 Color STN LCD (8bpp). In Slow Mode CPU runs with "half clock speed" (Bus Clock).
- IDLE Mode went to IDLE state from LCD SDRAM loop.
- RTC Power is independent. RTC can be operated in system power off mode. At this time RTC power is connected to a battery (3.0V).
- RUN / SLOW / IDLE / DEEPSLEEP Power consumption is estimated without RTC power dissipation.

Recommended Operating Range

Symbol	Parameter	Min	Max	Units
VDD (3.3V)	DC Power Supply Voltage (3.3V)	3.0	3.6	V
	\rightarrow use for I/O			
VDD (3.3V)	DC Power Supply Voltage (3.3V)	3.0	3.6	V
	\rightarrow use for a Core			
TOPR	Operating Temperature	-40	85	°C
	(Industrial Temperature)			

Table 11-2. Operating Range

11.2 DC characteristics

All characteristics are specified at Vdd=3.0 to 3.6 volts ans Vss=0 volts, over an operating temperature range of 0 to 100 $^\circ\text{C}$

CMOS Pins

		3 0	100 °C	Conditions	
Symbol	Parameter	Min	Max	VDD	
V _{IL}	Low-level Input Voltage	-0.5V	0.3xVDD	2.7V to 3.6V	Guaranteed Input Low Voltage
VIH	High-level Input Voltage	0.7xVDD	VDD+0.5V	2.7V to 3.6V	Guaranteed Input High Voltage
Vol	Low-level Output Voltage	-	VSS+0.1V	2.7V	IOL = 0.8mA
VOH	High-level Output Voltage	VDD-0.1V	-	2.7V	IOH = 0.8mA
l	Input Current at maximum voltage	-	1mA	2.7V to 3.6V	Input = 5.5V

Table 11-3. CMOS signal pin characteristics

TTL Compatible Pin

		0°C	100 °C	Conditions	
Symbol	Parameter	Min	Max	VDD	
VIL	Low-level Input Voltage	-0.5V	0.8V	2.7V to 3.6V	Guaranteed Input Low Voltage
VIH	High-level Input Voltage	2.0V	VDD+0.5V	2.7V to 3.6V	Guaranteed Input High Voltage
Vol	Low-level Output Voltage	-	0.4V	2.7V	IOL,2 to 0.8mA Depending on Cell
Voh	High-level Output Voltage	2.4V	-	2.7V	IOH,2 to 0.8mA Depending on Cell
lı	Input Current at maximum voltage	-	1mA	2.7V to 3.6V	Input = 5.5V

Table 11-4. TTL signal pin characteristics

I/O Circuit Pull-up Pin

The following current values are used for I/Os with internal pull-up devices.

	Min Current (at pad = 0V)	Max Current (at pad = 0V)
3.3V Pull-up	-30uA	-146uA
Equivalent resistance	88.3k Ohms	22.6k Ohms

I/O Circuit Pull-down Pin

The following current values are used for I/Os with internal pull-down devices.

	Min Current (at pad = 2.65V)	Max Current (at pad = 3.6V)
3.3V Pull-down	31uA	159uA
Equivalent resistance	85.5k Ohms	22.6k Ohms

11.3 A/D Converter Electrical Characteristics

Symbol	Paramter	Test Condition	Minimum	Typical	Maximum	Unit
l _{dd}	Normal	aclk = 3.704MHz Input = avref Fin = 4kHz ramp		4.0		mA
	Power Down	aclk = 3.704MHz			40	uA
an*	Analog Input Voltage		AVSS		avref	V
Accuracy	Resolution				10	Bits
INL	Integral Non-linearity	aclk = 3.704MHz Input = 0-avref(V) (Fin = 4kHz ramp)			±2.0	LSB
DNL	Differential Non-linearity	aclk = 3.704MHz Input = 0-avref(V) (Fin = 4kHz ramp)			±1.0	LSB
SNR	Signal-to-Noise Ratio	Fsample = 231.5ksps Fin = 4KHz	50	54		dB
SNDR	Signal-to-Noise Distortion Ratio		48	52		dB
aclk				3.704		MHz
tc	Conversion Time		1	4	8	us
avref*	Analog Reference Voltage				AVDD	V
T _{cal}	Power-up Time	Calibration time	1.2			ms
THD	Total Harmonic Distortion		50	54		dB
AVDD*	Analog Power		3.0	3.3	3.6	V
DVDD	Digital Power		3.0	3.3	3.6	V
Fin	Analog Input Frequency				60	KHz

Table 11-5. A/D converter characteristics

■ AVSS \leq an0~3 \leq avref \leq AVDD

12 APPENDIX

Peri. Name	Register Name	Width	Address	Method of clearing
PMU	PMURSR	27	0x8001.0020	Write "1"
*LCD	LcdStatus	4	0x8005.2004	Write "1"
INTC	STATUS	29	0x8005.0008	Clear interrupt source
USB	INTSTAT	20	0x8005.100C	Write "1"
ADCIF	ADCISR	3	0x8005.3010	Write "1"
**UART(Smart Card)	LSR	8	UxBase+0x14	Read register
	MSR	8	UxBase+0x18	
***SSI	SSPSR	5	SSIBase+0x0c	Write "1"
SMC	SMCSTAT	32	0x8005.C01C	Write "0"
TIMER	TOPSTAT	4	0x8005.D084	Write "1"
	T(0/1/2/3)STAT	1	0x8005.D0(0/2/4/6)C	
Watchdog Timer	WDTSTAT	2	0x8005.E004	Read register
RTC	RTCSTAT	3	0x8005.F004	Write "1"
2WSI	STATUSREG	16	0x8006.0008	Write "1"
Matrix KBD	KBSR	1	0x8006.1018	Write "1"

* LCD (Method of clearing) – reference : 9.1.2.2 LCD Controller Status/Mask and Interrupt Registers (LcdStatus, LcdStatusM, and LcdInterrupt)

- LcdStatus[3] : Write anything at LcdDBAR register or Enable LcdEn signal at Lcd control register[0]
- LcdStatus[2] : Write "1"
- LcdStatus[1] : Write anything at LcdDBAR register
- LcdStatus[0] : Write "1"

** UART (Address)

- UxBase : 0x8005.4000 (UART0), 0x8005.5000 (UART1), 0x8005.6000 (UART2), 0x8005.7000 (UART3),
- 0x8005.8000 (UART4), 0x8005.9000 (UART5)

*** SSI (Address)

■ SSIBase: 0x8005.A000 (SSI0), 0x8005.B000(SSI1)